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Software Testing

Programming is invariably buggy. 

How does one find bugs before actual use? 

Throw test inputs at program, see if correct. 

Try arcane corner cases, do sandbox testing. 

Ultimately, hope for the best!



Software Testing (Contd.)

Enough to try many corner case inputs? 

What about programs for online use? Interaction? 

How much is enough? When does one stop? 

What about software manipulating money? Or passwords?

“Testing shows the presence, not the absence of bugs.”

-  Edsger W. Dijkstra



It’s A Bird, It’s A Plane…

It’s formal verification! 

Allows programs to be proved correct, also finds bugs. 

Especially important for programs handling sensitive 
data.



Formal Verification: Overview

Theorem provers have been around since 1950s. 

1994: Intel discovers floating-point-division bug. Starts 
formally verifying all chips. 

Formal verification sort of catches on in industry.



Formal Verification: Overview

Two ways: Model checking, and deductive inference. 

Model checking: Create symbolic model that captures 
key behaviour and ignores extraneous details. Define 
properties in this model and verify. 

Deductive inference: Specify pre-execution and post-
execution statements in some logical language, where 
latter can be proved from former in a ‘correct’ program.



Security

Security inside a system: Input sanitisation, memory 
restrictions, appropriate buffer allocations… 

Security across systems: Firewalls, IP filtering, secure 
communication protocols… 



Formal Methods For Security
Bugs continue to haunt security protocols. 

OpenSSL suffered a bug called Heartbleed. 

Single-Sign-On was found to be flawed by Duo Labs.



Formal Methods For Security

Focus on symbolic model checking in this talk. 

Idealised model of communication and adversary 

Adversary controls network, can see all communication 

Cryptography assumed perfect — PKI, hashing etc. 

Formalise security properties and verify!



Formal Methods For Security

Abstract communications of the form A      B : t 

A sends to B a term t (constant, fresh random number, 
pair, encrypted term etc) 

Encryption represented as function enc(t, k) 

Shorthand notation {t}k



A Simple Example

A wants to check if B is online. 

Simple protocol to achieve this: 

A      B : {x}pk(B) 

B      A : {x}pk(A) 

At the end of this protocol, can A be sure that B is online? 

Now that x is known to A and B, can it be used as a shared secret 
between them (perhaps to authenticate further communication)?



A Simple Example (Onlineness)

At the end of this, can A be sure that B is online?





A Simple Example (Onlineness)

What if A reuses an x she used earlier to talk to C? 

I can replay C’s response from then. 

B might not be online. 

 But A thinks he is!



A Simple Example (Onlineness)

I can replay an earlier message! 

                       A     C : {x}pk(C) 

                        C     A : {x}pk(A) 

                                LATER 

                        A     B : {x}pk(B) 

               (I) B      A : {x}pk(A)



A Simple Example (Onlineness)

Ensure that x is “fresh” (randomly picked!) for every 
new session.



A Simple Example (Onlineness)

Ensure that x is “fresh” (randomly picked!) for every 
new session.



A Simple Example (Authentication)

If x is known to only A and B, can it be used as a shared 
secret between them (perhaps to authenticate further 
communication)? 

Again…





A Simple Example (Authentication)

Is it even the case that x is always known only to A and B? 

NOPE. 

I can execute a man-in-the-middle attack! 

  A     (I) B : {x}pk(B) 

          I      B : {x}pk(B) 

         B      I : {x}pk(I) 

(I) B      A : {x}pk(A)



A Simple Example (Authentication)

We would like x to be secret to A and B. 

Easy fix: Include sender’s identity inside encryption. 

    A     B : {A, x}pk(B) 

    B     A : {x}pk(A) 

Sounds fine, but how do we know this fixed the issue?



Proving Correctness

A sends out {A, x}pk(B) intended for B. Can we show 
that I never gets to learn x? 

Consider the various ways in which it is possible for I to 
have learnt x.  

If I never gets to learn x, each of these ways should 
result in some sort of contradiction. 



Dolev-Yao Model

Abstracts away from the 0/1 bit-world to a symbolic 
model of communication. 

Messages are abstract terms rather than bitstrings. 

Encryption, hashing etc. abstract functions on terms. 

Crypto assumed to be perfect, no cryptanalysis!



Dolev-Yao Model: Intruder
Intruder I cannot break encryption, but can 

• see any message 

• block any message 

• redirect any message 

• generate messages — according to set rules! 

• send messages in someone else’s name 

• start new session of the protocol



Dolev-Yao Model: Actions

Each communication is separated out into two actions: 
a send action and a  ‘corresponding’ receive action. 

Every term sent out is interpreted as being received by I, 
and each received term is assumed to be coming from I. 
(Ties in well with our intuition of I being the network!)



Term derivation system

U ∶= N � (Uǹ, UǺ) � {U}L

BY (U ∈ 9)
9 � U

9 � (UǸ, Uǹ)
TQMJUJ (J = Ǹ, ǹ)9 � UJ

9 � UǸ 9 � Uǹ
QBJS

9 � (UǸ, Uǹ)

9 � {U}L 9 � JOW(L)
EFD

9 � U

9 � U 9 � L
FOD

9 � {U}L



Dolev-Yao Model: Attacks (Again)

Recall this attack. 

A     (I) B : {x}pk(B) 

          I      B : {x}pk(B) 

         B      I : {x}pk(I) 

(I) B      A : {x}pk(A) 

How do we formally show that I learns the value of x here?



Dolev-Yao Model: Attacks (Again)

Need to analyse what terms get added to I’s database. 

A     (I) B : {x}pk(B) 

          I      B : {x}pk(B) 

         B      I : {x}pk(I) 

(I) B      A : {x}pk(A) 

Separate out each communication into the constituent send and 
receive actions, and see what terms get added to I’s database.



Dolev-Yao Model: Attacks (Again)

A     (I) B : {x}pk(B) 

          I      B : {x}pk(B) 

         B      I : {x}pk(I) 

(I) B      A : {x}pk(A) 



Dolev-Yao Model: Attacks (Again)

A     (I) B : {x}pk(B) 

          I      B : {x}pk(B) 

         B      I : {x}pk(I) 

(I) B      A : {x}pk(A) 

+A: {x}pk(B) 

  -B: {x}pk(B) 

+B: {x}pk(I) 

 -A: {x}pk(A) 



Dolev-Yao Model

Names A, B etc. denote ‘roles’, not specific agents. 

Each name instantiated to a concrete value in a run. 

Each run has multiple sessions with complex 
interactions; need to keep track of all instantiations. 

Run mechanism modelled in many different ways — 
automata, processes etc.



Security Properties

Secrecy: Intruder should not learn a designated secret 

Correspondence: A happens only if B happened earlier. 

Can verify by verifying each individual run.



Security Properties

What about properties spanning runs?  

Anonymity: No link between voter and vote. 

Maybe combining info across runs violates anonymity! 

Intuitively harder to verify than examining each run.



Good News, Bad News

Bad news first. 

General verification problem is undecidable. Boo.



Good News, Bad News

Bad news first. 

General verification problem is undecidable. Boo.

Good news now! 

Solvable for restricted (but meaningful) classes: finitely 
many sessions, boundedly many names etc.



Verification In Real Life
Attack on anonymity for Helios e-voting protocol. 

Whatsapp/FB messenger’s underlying protocol recently analyzed.



Verification In Real Life (Contd.)

Lots of tools available to automate verification. 

Security-centric: Scyther, Statverif, Tamarin… 

Automated theorem provers: Isabelle, Coq… 

Hotbed of research in various labs like IBM, MSR, 
Google etc.



Conclusion

Formal verification of protocols is important. 

Symbolic models are used to abstractly capture 
behaviour. 

Verification of these models presents many interesting 
questions about derivability, automation etc. 

Great area to come do cutting-edge research in!





Thank You!
vaishnavi@cmi.ac.in 

http://www.cmi.ac.in/~vaishnavi/
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