A Theory of Assertions for Dolev-Yao Models <u>Vaishnavi Sundararajan</u> Univ. Rennes, CNRS, IRISA 19th March 2019 ### Introduction - * Security protocol: a pattern of communications to achieve a security goal in an insecure environment. - * Each communication is of the form $A \rightarrow B$: m. - * Malicious intruder can mix-and-match messages (even without breaking cryptography). - * Need formal analysis of protocols to guarantee security goals! # Logical Flaws: Example ``` A \to B : \{m\}_{pk(B)} ``` $$B \to A : \{m\}_{pk(A)}$$ # Logical Flaws: Example ``` A \rightarrow B : \{m\}_{pk(B)} B \to A : \{m\}_{pk(A)} A \rightarrow : \{m\}_{pk(B)} I \rightarrow B : \{m\}_{pk(B)} B \to I : \{m\}_{pk(I)} \rightarrow A: \{m\}_{pk(A)} ``` ### Dolev-Yao Model - * Framework for analysis of security protocols. - * Messages are abstract terms rather than bit strings. - * Encryption, hashing etc. abstract functions on terms. - * Cryptography assumed to be perfect, no cryptanalysis! - * Formalize properties, verify. ### Dolev-Yao Model: Intruder Intruder I cannot break encryption, but can - * see any message - block any message - * redirect any message - * generate messages according to set rules! - * send messages in someone else's name - * initiate new communication according to the protocol ### Certification in Dolev-Yao - * Dolev-Yao treats all messages as "terms". - * What if protocol involves certificates? For authorization, delegation etc. - * Encoded as terms in Dolev-Yao bit commitment, mathematical operations, protocol-specific tagging etc. - * Not always concise/readable! # Example - * A sends to B m encrypted in some key k unknown to B, along with a certificate which says m is either a or b. - * Encode this certificate as a term in Dolev-Yao algebra. - * Uses 1-out-of-2 encryption: For a given $\{m_i\}_k$, show that it is of the form $\{m_i\}_k$ where $m_i \in \{m_0, m_1\}$, without revealing i. - * Needs multiplication, exponentiation, and hashing! # ZKP Terms [BHM08] - * Extend Dolev-Yao model with "ZKP terms". - * $ZK_{p,q}(\alpha_1,\ldots,\alpha_p;\beta_1,\ldots,\beta_q;F)$ - * α s: private; β s: public; F defines link between α s and β s. - * More readable certificate than encoding into terms. $$ZK_{2,3}(m,k;\{m\}_k,a,b;\beta_1 = enc(\alpha_1,\alpha_2) \land (\alpha_1 = \beta_2 \lor \alpha_1 = \beta_3))$$ # ZKP Terms (Contd.) - * Sounds great! So why reinvent the wheel? - * Consider $\{m = a \text{ or } m = b\}$ and $\{m = a \text{ or } m = c\}$ with $b \neq c$. - * Would like to be able to derive m = a from these two. - * ZKP terms don't allow derivations. Cannot infer m = a from these certificates in this system. ### Overall Idea - * Extend Dolev-Yao model with a class of abstract objects called 'assertions' which capture certification. - * Assertions are distinct from terms, and clearly specify the statements of the certificates they model. - * Inference on assertions is possible, independent of underlying implementation. ### Assertions * Assertions have the following syntax. $$\alpha := t_1 = t_2 \mid P(t) \mid \alpha_1 \wedge \alpha_2 \mid \alpha_1 \vee \alpha_2 \mid \exists x. \ \alpha \mid A \text{ says } \alpha$$ - * P is any application-specific predicate. - * says allows agents to "sign" an assertion as coming from them. - * Existential quantification lets agents hide witnesses. - * Earlier example now looks as follows: $$A \to B : \{m\}_k, \exists xy. [\{m\}_k = \{x\}_y \land (x = a \lor x = b)]$$ # Existential Quantification - * When exactly can one existentially quantify out a term from an assertion? - * $m \text{ from } m = t? m \text{ from } \{m\}_k = t?$ - * Quantification becomes complicated in the presence of encryption! # Abstractability - * Position *p* inside term *t* is 'abstractable' if we can replace the subterm at *p* with something else and build rest of *t* back up. - * We consider a notion of abstractability w.r.t. a set *S*, if we can use (some) terms in *S* to build relevant parts of *t*. - * Lift to assertions, but handle carefully in the presence of existential quantification. # Abstractability: Assertions - * $S = \{ senc(m, k), k \}$ - * $\alpha = \exists x.[\operatorname{senc}(x,k) = \operatorname{senc}(m,k)]$ - * abs $(S, \alpha) = \{001, 01, 010, 011\}$ # Inference system for Assertions - * Sequents of the form S; $A \vdash \alpha$. - * Simple equality rule: if t derivable from S, can state t = t. - * Some rules for manipulating equality make use of abstractability. # Inference system for Assertions - * Abstractability used by projection, substitution, existential introduction etc. - * Can go from $\alpha(t)$ to $\alpha(u)$ if all occurrences of t abstractable from α w.r.t. the set of terms S. - * Restricted contradiction rule: two terms t and u such that the structure of t and u can be determined to be different, but S; $A \vdash t = u$. $$\overline{S; A \cup \{\alpha\} \vdash \alpha}$$ ax $$\frac{S \vdash_{dy} t}{S; A \vdash t = t} eq$$ $$\frac{S; A \vdash f(t_1, ..., t_r) = f(u_1, ..., u_r)}{S; A \vdash t_i = u_i} proj_i \quad [t_i, u_i \text{ abstractable w.r.t. } S]$$ $$\frac{S; A \vdash t = u}{S; A \vdash \alpha} \perp [S \vdash t \perp u]$$ $$\frac{S; A \vdash t = u}{S; A \vdash \alpha} \perp \left[S \Vdash t \perp u \right] = \begin{cases} S; A \vdash \alpha[t]_P & S; A \vdash t = u \\ \hline S; A \vdash \alpha[u]_P \end{cases} \text{ subst } \left[t \text{ abstractable w.r.t. } S, S \vdash_{dy} u \right]$$ # Inference system for Assertions - * A says is essentially a signature with A's secret key, can be removed by an unsay rule. - * Rules for logical operators \land , \lor and \exists are as in standard intuitionistic logic (caveat of abstractability for $\exists i$). ### Assertions: Actions - * As with terms, agents can send and receive assertions. - * Can now branch based on the derivability of assertions: confirm and deny actions. - * An A-action is a send, receive, confirm or deny by A. - * Actions specified with as much pattern as possible for terms, with variables for terms unknown to recipeint. ### Runtime Model - * Each agent accumulates terms and assertions generated and received, in a knowledge state $(X; \Phi)$. - * Represent by $(X_A; \Phi_A)$ the knowledge state of agent A. - * Represent by $(X_I; \Phi_I)$ the knowledge state of the intruder I. - * Knowledge states used to enable actions, and possibly updated after performing actions. ### Runtime Model (Contd.) - * A protocol is just a set of roles. - * Can consider various instantiations of roles sessions. - * A run is an admissible (according to enabling conditions!) interleaving of such sessions. - * One can think of a transition system with states that keep track of agents' knowledge and all the sessions in progress, where enabled actions induce transitions. # Enabling & Updates | Action | Enabling conditions | Updates | |---------------------------|--|------------------------------------| | A sends t , α | $X_A \cup \{\vec{m}\} \vdash_{dy} t$ | $X_A' = X_A \cup \{\vec{m}\}$ | | with new nonces \vec{m} | $X_A \cup \{\vec{m}\}; \Phi_A \vdash \alpha$ | $X_I' = X_I \cup \{t\}$ | | | | $\Phi_I' = \Phi_I \cup \{\alpha\}$ | | A receives t, α | $X_I \vdash_{\mathit{dy}} t$ | $X_A' = X_A \cup \{t\}$ | | | $X_I;\Phi_I \vdash \alpha$ | $\Phi_A' = \Phi_A \cup \{\alpha\}$ | | A: confirm $lpha$ | $X_A;\Phi_A \vdash \alpha$ | No update | | $A: deny \ \alpha$ | $X_A;\Phi_A ot \sim \alpha$ | No update | # Case Study: FOO e-Voting Protocol - * Proposed by Fujioka, Okamoto and Ohta in 1992. [FOO92] - * Voter contacts admin, who checks voter's id and authenticates. - * Authenticated voter then sends vote anonymously to collector. - * Admin should not know vote, collector should not know id. - * Terms-only model ensures this via blind signatures. # FOO Protocol: Terms-only $V \rightarrow A$: V, $\{b \operatorname{lind}(\{v\}_r, b)\}_{sg(V)}$ $A \rightarrow V : \{ blind(\{v\}_r, b) \}_{sg(A)}$ $V \hookrightarrow C : \{\{v\}_r\}_{sg(A)}$ $C \rightarrow ist, \{\{v\}_r\}_{sg(A)}$ $V \hookrightarrow C : r$ unblind($\{b \mid d(t,b)\}_{sg(A)}$, b) $= \{t\}_{sg(A)}$ ### FOO Protocol: What we want $V \to A$: $\{v\}_k$, "V wants to vote with this encryption of a valid vote" $A \rightarrow V$: "V is eligible and wants to vote with the term sent earlier" $V \hookrightarrow C$: $\{v\}_{k'}$, "Some eligible agent was authorized by A to vote with a valid vote, this term is a re-encryption of that same vote." A does not have to modify V's term (which contains the vote) in order to certify it! ### FOO Protocol: Assertions ``` V \rightarrow A: \{v\}_{r_A}, V says \{\exists x, r : \{x\}_r = \{v\}_{r_A} \land \text{valid}(x)\} A : deny \exists x : voted(V, x) insert voted(V, \{v\}_{r_A}) A \to V: A says |\operatorname{elg}(V) \wedge \operatorname{voted}(V, \{v\}_{r_A}) \land V says \{\exists x, r : \{x\}_r = \{v\}_{r_A} \land valid(x)\}\} V \hookrightarrow C : \{v\}_{r_C}, r_C, \exists X, y, s : \{ A \text{ says } [elg(X) \land voted(X, \{y\}_s) \} \land X \text{ says } \{\exists x, r : \{x\}_r = \{y\}_s\} \land \text{valid}(x) \land y = v ``` ### Verification - * Derivability problem: Given a finite set of terms X, a finite set of assertions Φ , and an assertion α , is it the case whether X; $\Phi \vdash \alpha$? - * Insecurity problem: Given a protocol Pr and a designated secret assertion α , is there a run of Pr at the end of which X_I , $\Phi_I \vdash \alpha$? - * Proof search: Start from the desired conclusion, try to build a proof tree using inference system. - * For assertions, slightly problematic because of two reasons: - * Ve: Need to check that the conclusion of the rule is derivable from each disjunct separately; two proofs to search for! - * Ii: Need to pick appropriate term as witness; unbounded search! - * Consider down-closures. (S; A) said to be down-closed if: - * S contains all bound variables of A - * If $\beta \land \gamma \in A$, then $\{\beta, \gamma\} \subseteq A$ - * If $\beta \lor \gamma \in A$, then $\beta \in A$ or $\gamma \in A$ - * If $\exists x.\beta \in A$, then $\beta \in A$ - * If a says $\beta \in A$, then $\beta \in A$ - * (T;B) dc of (S;A) if it is minimal, dc with $S \subseteq T \& A \subseteq B$. - * Helpful because various "left" properties hold about this system. - ♦ Conjunction: S; $A \cup \{\beta \land \gamma\} \vdash \alpha$ iff S; $A \cup \{\beta, \gamma\} \vdash \alpha$. - * Disjunction: S; $A \cup \{\beta \lor \gamma\} \vdash \alpha \text{ iff } S$; $A \cup \{\beta\} \vdash \alpha \text{ and } S$; $A \cup \{\gamma\} \vdash \alpha$. - * Exists: S; $A \cup \{\exists x.\beta\} \vdash \alpha \text{ iff } S \cup \{x\}; A \cup \{\beta\} \vdash \alpha.^*$ - * Says: S; $A \cup \{a \text{ says } \beta\} \vdash \alpha \text{ iff } S$; $A \cup \{\beta, a \text{ says } \beta\} \vdash \alpha$. - * Enough to consider trim(B) = { $t = u \mid t = u \in B$ } for a dc (T; B). - * S; $A \vdash \alpha$ iff all dc T; $B \vdash \alpha$. - * $T; B \vdash \alpha \text{ iff } T; \text{trim}(B) \vdash \alpha \text{ using core} = \{ax, eq, \bot, subst, proj, \land i, \lor i, \exists i\}.$ - * Proofs in core have a normal form can be decomposed into two parts: - ♦ Proofs of T; trim(B) $\vdash_{eq} \mu(t) = \mu(u)$ for each t = u ∈ E, and - * A proof of $T; E \vdash \alpha$ using only \land i, \lor i, \exists i, says - μ: assigns witnesses for the quantifiers - E: set of equalities that are subformulas of α - * Problem of μ assigning unboundedly large terms for witnesses for $\exists i$ remains. - * Adapt idea of 'small substitutions', as presented by [RT03] for the terms-only system. - * Key notion there: If the intruder can achieve the same 'view' with a smaller term, no need to use a larger term. - * Have μ , want small ν s.t. for t, u subterms of S, A, α if S; $A \vdash_{eq} \mu(t) = \mu(u)$ then S; $A \vdash_{eq} \nu(t) = \nu(u)$. - * For every down-closure (T; B), need to guess a set of equalities E and a small substitution μ s.t. (T; B) derives $\mu(E)$, and $T; E \vdash \alpha$. - * (T; B) is linear in the size of (S; A) - * E polynomial in the size of α (since subformulas) - * μ polynomial in the size of S; A and α (since small) - * A proof of $T; E \vdash \alpha$ linear in the size of α . - * Obtain a Π_2 , i.e. a coNP^{NP} procedure. - * This bound is tight the problem is Π_2 -complete. - * Reduction from the validity problem for QBF formulas of the form $\forall p_1...p_m \exists q_1...q_n \psi$. - * Can define for each such QBF formula S, A and α s.t. S; $A \vdash \alpha$ iff $\forall p_1...p_m \exists q_1...q_n \psi$ is valid. # Insecurity Problem - * For the derivability problem, just one substitution μ for the witnesses for $\exists i$. Here, the intruder can inject terms, so a σ for the input variables in (S; A) as well as μ . - * Can get small ν instead of μ as earlier. But not yet clear how to do that for σ in the presence of μ . - * Solve the insecurity problem for finitely many sessions and bounded σ . Guess a σ and then use the derivability algorithm. - * Reduction from QBF validity gives us Π_3 -completeness. # Summary - * Extended the Dolev-Yao model with assertions. - * Case study via the FOO e-voting protocol. - * Studied derivability and insecurity problems. - * Derivability Π_2 -complete, insecurity (bounded σ) Π_3 -complete. ### Future Work - * Effect of adding other operators into assertion syntax - * Derivability in the presence of equational theories - * Implementation for assertions - * Tool support ### References - * Existential assertions for voting protocols R Ramanujam, Vaishnavi Sundararajan and S P Suresh Proc. FC 2017 Workshops (Voting '17), Springer LNCS vol. 10323, 337–352. - * The complexity of disjunction in intuitionistic logic R Ramanujam, Vaishnavi Sundararajan and S P Suresh Proc. LFCS 2016, Springer LNCS vol. 9537, 349–363. - * Extending Dolev-Yao with assertions R Ramanujam, Vaishnavi Sundararajan and S P Suresh Proc. ICISS 2014, Springer LNCS vol. 8880, 50–68. # Thank you!