A Theory of Assertions for Dolev-Yao Models

<u>Vaishnavi Sundararajan</u> Univ. Rennes, CNRS, IRISA

19th March 2019

Introduction

- * Security protocol: a pattern of communications to achieve a security goal in an insecure environment.
- * Each communication is of the form $A \rightarrow B$: m.
- * Malicious intruder can mix-and-match messages (even without breaking cryptography).
- * Need formal analysis of protocols to guarantee security goals!

Logical Flaws: Example

```
A \to B : \{m\}_{pk(B)}
```

$$B \to A : \{m\}_{pk(A)}$$

Logical Flaws: Example

```
A \rightarrow B : \{m\}_{pk(B)}
B \to A : \{m\}_{pk(A)}
                          A \rightarrow : \{m\}_{pk(B)}
                                                        I \rightarrow B : \{m\}_{pk(B)}
                                                        B \to I : \{m\}_{pk(I)}
                             \rightarrow A: \{m\}_{pk(A)}
```

Dolev-Yao Model

- * Framework for analysis of security protocols.
- * Messages are abstract terms rather than bit strings.
- * Encryption, hashing etc. abstract functions on terms.
- * Cryptography assumed to be perfect, no cryptanalysis!
- * Formalize properties, verify.

Dolev-Yao Model: Intruder

Intruder I cannot break encryption, but can

- * see any message
- block any message
- * redirect any message
- * generate messages according to set rules!
- * send messages in someone else's name
- * initiate new communication according to the protocol

Certification in Dolev-Yao

- * Dolev-Yao treats all messages as "terms".
- * What if protocol involves certificates? For authorization, delegation etc.
- * Encoded as terms in Dolev-Yao bit commitment, mathematical operations, protocol-specific tagging etc.
- * Not always concise/readable!

Example

- * A sends to B m encrypted in some key k unknown to B, along with a certificate which says m is either a or b.
- * Encode this certificate as a term in Dolev-Yao algebra.
- * Uses 1-out-of-2 encryption: For a given $\{m_i\}_k$, show that it is of the form $\{m_i\}_k$ where $m_i \in \{m_0, m_1\}$, without revealing i.
- * Needs multiplication, exponentiation, and hashing!

ZKP Terms [BHM08]

- * Extend Dolev-Yao model with "ZKP terms".
- * $ZK_{p,q}(\alpha_1,\ldots,\alpha_p;\beta_1,\ldots,\beta_q;F)$
- * α s: private; β s: public; F defines link between α s and β s.
- * More readable certificate than encoding into terms.

$$ZK_{2,3}(m,k;\{m\}_k,a,b;\beta_1 = enc(\alpha_1,\alpha_2) \land (\alpha_1 = \beta_2 \lor \alpha_1 = \beta_3))$$

ZKP Terms (Contd.)

- * Sounds great! So why reinvent the wheel?
- * Consider $\{m = a \text{ or } m = b\}$ and $\{m = a \text{ or } m = c\}$ with $b \neq c$.
- * Would like to be able to derive m = a from these two.
- * ZKP terms don't allow derivations. Cannot infer m = a from these certificates in this system.

Overall Idea

- * Extend Dolev-Yao model with a class of abstract objects called 'assertions' which capture certification.
- * Assertions are distinct from terms, and clearly specify the statements of the certificates they model.
- * Inference on assertions is possible, independent of underlying implementation.

Assertions

* Assertions have the following syntax.

$$\alpha := t_1 = t_2 \mid P(t) \mid \alpha_1 \wedge \alpha_2 \mid \alpha_1 \vee \alpha_2 \mid \exists x. \ \alpha \mid A \text{ says } \alpha$$

- * P is any application-specific predicate.
- * says allows agents to "sign" an assertion as coming from them.
- * Existential quantification lets agents hide witnesses.
- * Earlier example now looks as follows:

$$A \to B : \{m\}_k, \exists xy. [\{m\}_k = \{x\}_y \land (x = a \lor x = b)]$$

Existential Quantification

- * When exactly can one existentially quantify out a term from an assertion?
- * $m \text{ from } m = t? m \text{ from } \{m\}_k = t?$
- * Quantification becomes complicated in the presence of encryption!

Abstractability

- * Position *p* inside term *t* is 'abstractable' if we can replace the subterm at *p* with something else and build rest of *t* back up.
- * We consider a notion of abstractability w.r.t. a set *S*, if we can use (some) terms in *S* to build relevant parts of *t*.
- * Lift to assertions, but handle carefully in the presence of existential quantification.

Abstractability: Assertions

- * $S = \{ senc(m, k), k \}$
- * $\alpha = \exists x.[\operatorname{senc}(x,k) = \operatorname{senc}(m,k)]$
- * abs $(S, \alpha) = \{001, 01, 010, 011\}$

Inference system for Assertions

- * Sequents of the form S; $A \vdash \alpha$.
- * Simple equality rule: if t derivable from S, can state t = t.
- * Some rules for manipulating equality make use of abstractability.

Inference system for Assertions

- * Abstractability used by projection, substitution, existential introduction etc.
- * Can go from $\alpha(t)$ to $\alpha(u)$ if all occurrences of t abstractable from α w.r.t. the set of terms S.
- * Restricted contradiction rule: two terms t and u such that the structure of t and u can be determined to be different, but S; $A \vdash t = u$.

$$\overline{S; A \cup \{\alpha\} \vdash \alpha}$$
 ax

$$\frac{S \vdash_{dy} t}{S; A \vdash t = t} eq$$

$$\frac{S; A \vdash f(t_1, ..., t_r) = f(u_1, ..., u_r)}{S; A \vdash t_i = u_i} proj_i \quad [t_i, u_i \text{ abstractable w.r.t. } S]$$

$$\frac{S; A \vdash t = u}{S; A \vdash \alpha} \perp [S \vdash t \perp u]$$

$$\frac{S; A \vdash t = u}{S; A \vdash \alpha} \perp \left[S \Vdash t \perp u \right] = \begin{cases} S; A \vdash \alpha[t]_P & S; A \vdash t = u \\ \hline S; A \vdash \alpha[u]_P \end{cases} \text{ subst } \left[t \text{ abstractable w.r.t. } S, S \vdash_{dy} u \right]$$

Inference system for Assertions

- * A says is essentially a signature with A's secret key, can be removed by an unsay rule.
- * Rules for logical operators \land , \lor and \exists are as in standard intuitionistic logic (caveat of abstractability for $\exists i$).

Assertions: Actions

- * As with terms, agents can send and receive assertions.
- * Can now branch based on the derivability of assertions: confirm and deny actions.
- * An A-action is a send, receive, confirm or deny by A.
- * Actions specified with as much pattern as possible for terms, with variables for terms unknown to recipeint.

Runtime Model

- * Each agent accumulates terms and assertions generated and received, in a knowledge state $(X; \Phi)$.
- * Represent by $(X_A; \Phi_A)$ the knowledge state of agent A.
- * Represent by $(X_I; \Phi_I)$ the knowledge state of the intruder I.
- * Knowledge states used to enable actions, and possibly updated after performing actions.

Runtime Model (Contd.)

- * A protocol is just a set of roles.
- * Can consider various instantiations of roles sessions.
- * A run is an admissible (according to enabling conditions!) interleaving of such sessions.
- * One can think of a transition system with states that keep track of agents' knowledge and all the sessions in progress, where enabled actions induce transitions.

Enabling & Updates

Action	Enabling conditions	Updates
A sends t , α	$X_A \cup \{\vec{m}\} \vdash_{dy} t$	$X_A' = X_A \cup \{\vec{m}\}$
with new nonces \vec{m}	$X_A \cup \{\vec{m}\}; \Phi_A \vdash \alpha$	$X_I' = X_I \cup \{t\}$
		$\Phi_I' = \Phi_I \cup \{\alpha\}$
A receives t, α	$X_I \vdash_{\mathit{dy}} t$	$X_A' = X_A \cup \{t\}$
	$X_I;\Phi_I \vdash \alpha$	$\Phi_A' = \Phi_A \cup \{\alpha\}$
A: confirm $lpha$	$X_A;\Phi_A \vdash \alpha$	No update
$A: deny \ \alpha$	$X_A;\Phi_A ot \sim \alpha$	No update

Case Study: FOO e-Voting Protocol

- * Proposed by Fujioka, Okamoto and Ohta in 1992. [FOO92]
- * Voter contacts admin, who checks voter's id and authenticates.
- * Authenticated voter then sends vote anonymously to collector.
- * Admin should not know vote, collector should not know id.
- * Terms-only model ensures this via blind signatures.

FOO Protocol: Terms-only

 $V \rightarrow A$: V, $\{b \operatorname{lind}(\{v\}_r, b)\}_{sg(V)}$

 $A \rightarrow V : \{ blind(\{v\}_r, b) \}_{sg(A)}$

 $V \hookrightarrow C : \{\{v\}_r\}_{sg(A)}$

 $C \rightarrow ist, \{\{v\}_r\}_{sg(A)}$

 $V \hookrightarrow C : r$

unblind($\{b \mid d(t,b)\}_{sg(A)}$, b) $= \{t\}_{sg(A)}$

FOO Protocol: What we want

 $V \to A$: $\{v\}_k$, "V wants to vote with this encryption of a valid vote"

 $A \rightarrow V$: "V is eligible and wants to vote with the term sent earlier"

 $V \hookrightarrow C$: $\{v\}_{k'}$, "Some eligible agent was authorized by A to vote with a valid vote, this term is a re-encryption of that same vote."

A does not have to modify V's term (which contains the vote) in order to certify it!

FOO Protocol: Assertions

```
V \rightarrow A: \{v\}_{r_A}, V says \{\exists x, r : \{x\}_r = \{v\}_{r_A} \land \text{valid}(x)\}
        A : deny \exists x : voted(V, x)
                     insert voted(V, \{v\}_{r_A})
A \to V: A says |\operatorname{elg}(V) \wedge \operatorname{voted}(V, \{v\}_{r_A})
                              \land V says \{\exists x, r : \{x\}_r = \{v\}_{r_A} \land valid(x)\}\}
V \hookrightarrow C : \{v\}_{r_C}, r_C,
                    \exists X, y, s : \{ A \text{ says } [elg(X) \land voted(X, \{y\}_s) \}
                                               \land X \text{ says } \{\exists x, r : \{x\}_r = \{y\}_s\}
                                                              \land \text{valid}(x)
                                   \land y = v
```

Verification

- * Derivability problem: Given a finite set of terms X, a finite set of assertions Φ , and an assertion α , is it the case whether X; $\Phi \vdash \alpha$?
- * Insecurity problem: Given a protocol Pr and a designated secret assertion α , is there a run of Pr at the end of which X_I , $\Phi_I \vdash \alpha$?

- * Proof search: Start from the desired conclusion, try to build a proof tree using inference system.
- * For assertions, slightly problematic because of two reasons:
 - * Ve: Need to check that the conclusion of the rule is derivable from each disjunct separately; two proofs to search for!
 - * Ii: Need to pick appropriate term as witness; unbounded search!

- * Consider down-closures. (S; A) said to be down-closed if:
 - * S contains all bound variables of A
 - * If $\beta \land \gamma \in A$, then $\{\beta, \gamma\} \subseteq A$
 - * If $\beta \lor \gamma \in A$, then $\beta \in A$ or $\gamma \in A$
 - * If $\exists x.\beta \in A$, then $\beta \in A$
 - * If a says $\beta \in A$, then $\beta \in A$
- * (T;B) dc of (S;A) if it is minimal, dc with $S \subseteq T \& A \subseteq B$.

- * Helpful because various "left" properties hold about this system.
 - ♦ Conjunction: S; $A \cup \{\beta \land \gamma\} \vdash \alpha$ iff S; $A \cup \{\beta, \gamma\} \vdash \alpha$.
 - * Disjunction: S; $A \cup \{\beta \lor \gamma\} \vdash \alpha \text{ iff } S$; $A \cup \{\beta\} \vdash \alpha \text{ and } S$; $A \cup \{\gamma\} \vdash \alpha$.
 - * Exists: S; $A \cup \{\exists x.\beta\} \vdash \alpha \text{ iff } S \cup \{x\}; A \cup \{\beta\} \vdash \alpha.^*$
 - * Says: S; $A \cup \{a \text{ says } \beta\} \vdash \alpha \text{ iff } S$; $A \cup \{\beta, a \text{ says } \beta\} \vdash \alpha$.
- * Enough to consider trim(B) = { $t = u \mid t = u \in B$ } for a dc (T; B).

- * S; $A \vdash \alpha$ iff all dc T; $B \vdash \alpha$.
- * $T; B \vdash \alpha \text{ iff } T; \text{trim}(B) \vdash \alpha \text{ using core} = \{ax, eq, \bot, subst, proj, \land i, \lor i, \exists i\}.$
- * Proofs in core have a normal form can be decomposed into two parts:
 - ♦ Proofs of T; trim(B) $\vdash_{eq} \mu(t) = \mu(u)$ for each t = u ∈ E, and
 - * A proof of $T; E \vdash \alpha$ using only \land i, \lor i, \exists i, says
 - μ: assigns witnesses for the quantifiers
 - E: set of equalities that are subformulas of α

- * Problem of μ assigning unboundedly large terms for witnesses for $\exists i$ remains.
- * Adapt idea of 'small substitutions', as presented by [RT03] for the terms-only system.
- * Key notion there: If the intruder can achieve the same 'view' with a smaller term, no need to use a larger term.
- * Have μ , want small ν s.t. for t, u subterms of S, A, α if S; $A \vdash_{eq} \mu(t) = \mu(u)$ then S; $A \vdash_{eq} \nu(t) = \nu(u)$.

- * For every down-closure (T; B), need to guess a set of equalities E and a small substitution μ s.t. (T; B) derives $\mu(E)$, and $T; E \vdash \alpha$.
 - * (T; B) is linear in the size of (S; A)
 - * E polynomial in the size of α (since subformulas)
 - * μ polynomial in the size of S; A and α (since small)
 - * A proof of $T; E \vdash \alpha$ linear in the size of α .
- * Obtain a Π_2 , i.e. a coNP^{NP} procedure.

- * This bound is tight the problem is Π_2 -complete.
- * Reduction from the validity problem for QBF formulas of the form $\forall p_1...p_m \exists q_1...q_n \psi$.
- * Can define for each such QBF formula S, A and α s.t. S; $A \vdash \alpha$ iff $\forall p_1...p_m \exists q_1...q_n \psi$ is valid.

Insecurity Problem

- * For the derivability problem, just one substitution μ for the witnesses for $\exists i$. Here, the intruder can inject terms, so a σ for the input variables in (S; A) as well as μ .
- * Can get small ν instead of μ as earlier. But not yet clear how to do that for σ in the presence of μ .
- * Solve the insecurity problem for finitely many sessions and bounded σ . Guess a σ and then use the derivability algorithm.
- * Reduction from QBF validity gives us Π_3 -completeness.

Summary

- * Extended the Dolev-Yao model with assertions.
- * Case study via the FOO e-voting protocol.
- * Studied derivability and insecurity problems.
- * Derivability Π_2 -complete, insecurity (bounded σ) Π_3 -complete.

Future Work

- * Effect of adding other operators into assertion syntax
- * Derivability in the presence of equational theories
- * Implementation for assertions
- * Tool support

References

- * Existential assertions for voting protocols

 R Ramanujam, Vaishnavi Sundararajan and S P Suresh

 Proc. FC 2017 Workshops (Voting '17), Springer LNCS vol. 10323, 337–352.
- * The complexity of disjunction in intuitionistic logic R Ramanujam, Vaishnavi Sundararajan and S P Suresh Proc. LFCS 2016, Springer LNCS vol. 9537, 349–363.
- * Extending Dolev-Yao with assertions R Ramanujam, Vaishnavi Sundararajan and S P Suresh Proc. ICISS 2014, Springer LNCS vol. 8880, 50–68.

Thank you!