
Extending Dolev-Yao with Assertions

R Ramanujam, Vaishnavi Sundararajan, S P Suresh

ICISS , Hyderabad
December , 

R Ramanujam, Vaishnavi S, S P Suresh Extending Dolev-Yao with Assertions  / 



Outline

 Introduction

 Example

 Assertions – Syntax, Semantics

 Complexity results

 Manipulating assertions

 Concluding remarks

R Ramanujam, Vaishnavi S, S P Suresh Extending Dolev-Yao with Assertions  / 



Introduction

Outline

 Introduction

 Example

 Assertions – Syntax, Semantics

 Complexity results

 Manipulating assertions

 Concluding remarks

R Ramanujam, Vaishnavi S, S P Suresh Extending Dolev-Yao with Assertions  / 



Introduction

TheDolev-Yao Model

Useful for modelling agents’ abilities in cryptographic protocols
Message space viewed as term algebra t ∶= m ∣ (t, t) ∣ {t}k
Intruder is the network – has access to any communicated message, but
cannot break encryption

ax (t ∈ X)
X ⊢ t

X ⊢ (t, t)
spliti (i = ,)

X ⊢ ti

X ⊢ t X ⊢ t
pair

X ⊢ (t, t)

X ⊢ {t}k X ⊢ inv(k)
dec

X ⊢ t

X ⊢ t X ⊢ k
enc

X ⊢ {t}k

Figure: Term derivation rules, where X is a set of terms

R Ramanujam, Vaishnavi S, S P Suresh Extending Dolev-Yao with Assertions  / 



Introduction

More about Dolev-Yao

Dolev-Yao treats terms as tokens

Recepients ‘own’ terms, can pass them along in own name

What if protocol uses certificates? (Should only be verified, but not
owned)

Common behaviour, especially in protocols involving authorization and
delegation.

Surely if it’s that common, Dolev-Yao handles it?

Yes, it does.

R Ramanujam, Vaishnavi S, S P Suresh Extending Dolev-Yao with Assertions  / 



Introduction

But...

Dolev-Yao expresses certification in the following ways:

Cryptographic devices – , bit commitment etc.

Ad-hoc methods – by with an agent’s name to indicate origin etc.

R Ramanujam, Vaishnavi S, S P Suresh Extending Dolev-Yao with Assertions  / 



Introduction

But...

Dolev-Yao expresses certification in the following ways:

Cryptographic devices – zero knowledge proofs, bit commitment etc.

Ad-hoc methods – by with an agent’s name to indicate origin etc.

R Ramanujam, Vaishnavi S, S P Suresh Extending Dolev-Yao with Assertions  / 



Introduction

But...

Dolev-Yao expresses certification in the following ways:

Cryptographic devices – zero knowledge proofs

Not concise or readable

, bit commitment etc.

Ad-hoc methods – by with an agent’s name to indicate origin etc.

R Ramanujam, Vaishnavi S, S P Suresh Extending Dolev-Yao with Assertions  / 



Introduction

But...

Dolev-Yao expresses certification in the following ways:

Cryptographic devices – zero knowledge proofs

Not concise or readable

, bit commitment etc.

Ad-hoc methods – by tagging a term with an agent’s name to indicate
origin etc.

R Ramanujam, Vaishnavi S, S P Suresh Extending Dolev-Yao with Assertions  / 



Introduction

But...

Dolev-Yao expresses certification in the following ways:

Cryptographic devices – zero knowledge proofs

Not concise or readable

, bit commitment etc.

Ad-hoc methods – by tagging a term

Not general enough

with an agent’s name to indicate
origin etc.

R Ramanujam, Vaishnavi S, S P Suresh Extending Dolev-Yao with Assertions  / 



Example

Outline

 Introduction

 Example

 Assertions – Syntax, Semantics

 Complexity results

 Manipulating assertions

 Concluding remarks

R Ramanujam, Vaishnavi S, S P Suresh Extending Dolev-Yao with Assertions  / 



Example

Example

We wish to model the following scenario.

Example 

Agent A sends agent B a noncem encrypted with B’s public key. B then
passes it on to a third agent C with some partial information about the value
ofm. (Suppose the actual value ofm is a)

A B

B C

{m}pk(B)

{m}pk(B), {m is a orm is b}

One of the most common ways to communicate such a certificate is by
-out-of- re-encryption.
R Ramanujam, Vaishnavi S, S P Suresh Extending Dolev-Yao with Assertions  / 



Example

Modelling this in Dolev-Yao

-out-of- Re-encryption: We have g and h known to everyone, where h = gs
(s secret to the prover P). enc(m) = (gr,mhr) is the term obtained on
encrypting the termm with a random r. For a given pair (x, y), Pmust prove
to V that it is of the form enc(mi) wheremi ∈ {m,m}, without revealing i.

Basic idea:

P sends to V the values (x, y),{m,m}.

V sends back (x, y
m
) ,(x, y

m
).

P sends V a proof for -out-of- equality of discrete logarithm for

(x, y
m
) ,(x, y

m
).

R Ramanujam, Vaishnavi S, S P Suresh Extending Dolev-Yao with Assertions  / 



Example

Modelling this in Dolev-Yao

-out-of- Re-encryption: We have g and h known to everyone, where h = gs
(s secret to the prover P). enc(m) = (gr,mhr) is the term obtained on
encrypting the termm with a random r. For a given pair (x, y), Pmust prove
to V that it is of the form enc(mi) wheremi ∈ {m,m}, without revealing i.

Basic idea:

P sends to V the values (x, y),{m,m}.

V sends back (x, y
m
) ,(x, y

m
).

P sends V a proof for -out-of- equality of discrete logarithm for

(x, y
m
) ,(x, y

m
).

R Ramanujam, Vaishnavi S, S P Suresh Extending Dolev-Yao with Assertions  / 



Example

Modelling this in Dolev-Yao

-out-of- Re-encryption: We have g and h known to everyone, where h = gs
(s secret to the prover P). enc(m) = (gr,mhr) is the term obtained on
encrypting the termm with a random r. For a given pair (x, y), Pmust prove
to V that it is of the form enc(mi) wheremi ∈ {m,m}, without revealing i.

Basic idea:

P sends to V the values (x, y),{m,m}.

V sends back (x, y
m
) ,(x, y

m
).

P sends V a proof for -out-of- equality of discrete logarithm for

(x, y
m
) ,(x, y

m
).

R Ramanujam, Vaishnavi S, S P Suresh Extending Dolev-Yao with Assertions  / 



Example

Modelling this in Dolev-Yao

-out-of- Re-encryption: We have g and h known to everyone, where h = gs
(s secret to the prover P). enc(m) = (gr,mhr) is the term obtained on
encrypting the termm with a random r. For a given pair (x, y), Pmust prove
to V that it is of the form enc(mi) wheremi ∈ {m,m}, without revealing i.

Basic idea:

P sends to V the values (x, y),{m,m}.

V sends back (x, y
m
) ,(x, y

m
).

P sends V a proof for -out-of- equality of discrete logarithm for

(x, y
m
) ,(x, y

m
).

R Ramanujam, Vaishnavi S, S P Suresh Extending Dolev-Yao with Assertions  / 



Example

Modelling this in Dolev-Yao +

-out-of- Equality of discrete logarithm (EDL): For fixed g and h known to
everyone, and for given (x, y) and (x, y), the prover Pmust prove to V
that there exist i andm such that xi = gm and yi = hm.

R Ramanujam, Vaishnavi S, S P Suresh Extending Dolev-Yao with Assertions  / 



Example

Modelling this in Dolev-Yao +

-out-of- Equality of discrete logarithm (EDL): For fixed g and h known to
everyone, and for given (x, y) and (x, y), the prover Pmust prove to V
that there exist i andm such that xi = gm and yi = hm.

Choose d, d, r, r randomly.
Set c = hash (xd gr , xd gr , yd hr , yd hr).

Set d−i = d, r−i = r, e = c − d and s = mdi + ri −me.
What P does

P V
hash (xd gr , xd gr , yd hr , yd hr , x, x, y, y) , d, e, r, s

Check whether
c ?= d + e ?= hash(xd−igr, xei gs, yd−ihr, yei hs, x, x, y, y). What V does

R Ramanujam, Vaishnavi S, S P Suresh Extending Dolev-Yao with Assertions  / 



Example

Modelling this in Dolev-Yao +

-out-of- Equality of discrete logarithm (EDL): For fixed g and h known to
everyone, and for given (x, y) and (x, y), the prover Pmust prove to V
that there exist i andm such that xi = gm and yi = hm.

Choose d, d, r, r randomly.
Set c = hash (xd gr , xd gr , yd hr , yd hr).

Set d−i = d, r−i = r, e = c − d and s = mdi + ri −me.
What P does

P V
hash (xd gr , xd gr , yd hr , yd hr , x, x, y, y) , d, e, r, s

Check whether
c ?= d + e ?= hash(xd−igr, xei gs, yd−ihr, yei hs, x, x, y, y). What V does

This clearly isn’t very concise or readable.
R Ramanujam, Vaishnavi S, S P Suresh Extending Dolev-Yao with Assertions  / 



Assertions – Syntax, Semantics

Outline

 Introduction

 Example

 Assertions – Syntax, Semantics

 Complexity results

 Manipulating assertions

 Concluding remarks

R Ramanujam, Vaishnavi S, S P Suresh Extending Dolev-Yao with Assertions  / 



Assertions – Syntax, Semantics

What we want of assertions

An assertion should

Be readable.

Be non-ownable – agent B should not be able to send A’s assertion in its
own name.

Be able to provide partial information about terms it references.

Be communicated in a form which reveals the origin agent.

R Ramanujam, Vaishnavi S, S P Suresh Extending Dolev-Yao with Assertions  / 



Assertions – Syntax, Semantics

Assertion language

The set A of assertions is given by the following syntax

α ∶= m ≺ t ∣ t = t′ ∣ α ∨ α ∣ α ∧ α

wherem is a nonce, andm ≺ t is to be read asm occurs in t.

Disjunction allows us to model partial information certificates.

▸ In Example , the appropriate assertion is a ≺ {m}pk(B) ∨ b ≺ {m}pk(B).
(Note that only one of the two disjuncts can be true at a time)

R Ramanujam, Vaishnavi S, S P Suresh Extending Dolev-Yao with Assertions  / 



Assertions – Syntax, Semantics

Assertion language

The set A of assertions is given by the following syntax

α ∶= m ≺ t ∣ t = t′ ∣ α ∨ α ∣ α ∧ α

wherem is a nonce, andm ≺ t is to be read asm occurs in t.

Disjunction allows us to model partial information certificates.

▸ In Example , the appropriate assertion is a ≺ {m}pk(B) ∨ b ≺ {m}pk(B).
(Note that only one of the two disjuncts can be true at a time)

R Ramanujam, Vaishnavi S, S P Suresh Extending Dolev-Yao with Assertions  / 



Assertions – Syntax, Semantics

Communicated messages

In Example , the communication from B to C in the second step of the
protocol looks as follows:

B→ C ∶ {m}pk(B),{a ≺ {m}pk(B) ∨ b ≺ {m}pk(B)}sd(B)

The sd(B) signifies that the assertion is signed by B. The communicated
assertion thus carries information about the originating agent.

R Ramanujam, Vaishnavi S, S P Suresh Extending Dolev-Yao with Assertions  / 



Assertions – Syntax, Semantics

Example  with assertions

Our running example now reads as follows, when augmented with these
assertions.

A→ B ∶ {m}pk(B)
B→ C ∶ {m}pk(B),{a ≺ {m}pk(B) ∨ b ≺ {m}pk(B)}sd(B)

Much more succinct and readable than the Dolev-Yao version!

R Ramanujam, Vaishnavi S, S P Suresh Extending Dolev-Yao with Assertions  / 



Assertions – Syntax, Semantics

Example  with assertions

Our running example now reads as follows, when augmented with these
assertions.

A→ B ∶ {m}pk(B)
B→ C ∶ {m}pk(B),{a ≺ {m}pk(B) ∨ b ≺ {m}pk(B)}sd(B)

Much more succinct and readable than the Dolev-Yao version!

R Ramanujam, Vaishnavi S, S P Suresh Extending Dolev-Yao with Assertions  / 



Assertions – Syntax, Semantics

What about the intruder?

The intruder I is still the network.

But assertions, unlike terms, are signed. How does that affect I?

I stores all signed assertions sent out, and may replay them later.

Cannot modify assertions sent out earlier.

Cannot replay an assertion by an agent in any other agent’s name.

R Ramanujam, Vaishnavi S, S P Suresh Extending Dolev-Yao with Assertions  / 



Assertions – Syntax, Semantics

What about the intruder?

The intruder I is still the network.

But assertions, unlike terms, are signed. How does that affect I?

I stores all signed assertions sent out, and may replay them later.

Cannot modify assertions sent out earlier.

Cannot replay an assertion by an agent in any other agent’s name.

R Ramanujam, Vaishnavi S, S P Suresh Extending Dolev-Yao with Assertions  / 



Assertions – Syntax, Semantics

Why aren’t there any proofs being sent in our version?

Zero knowledge proofs put the burden of verification on recepients.

Our paradigm: “perfect assertion assumption”.

Underlying system ensures only true assertions are sent out.

Assertion’s recepient no longer has to worry about checking its truth.

Think of it as the underlying system being a verifying authority, and
each agent sends a proof of its assertion to this authority. The authority
checks the proof first, and allows the agent to send out the assertion
only if the proof is correct.

R Ramanujam, Vaishnavi S, S P Suresh Extending Dolev-Yao with Assertions  / 



Assertions – Syntax, Semantics

Checks and derivations

When A sends a term t and an assertion α, the system checks that

A can derive the term t from its set of terms XA using Dolev-Yao rules.

A can derive the assertion α from its set of assertions ΦA using the
system derivation rules (coming up on the next two slides).

When A receives assertion α (claiming to be) from B, the system checks that

α is signed by B.

B sent α out into the network earlier.

R Ramanujam, Vaishnavi S, S P Suresh Extending Dolev-Yao with Assertions  / 



Assertions – Syntax, Semantics

Checks and derivations

When A sends a term t and an assertion α, the system checks that

A can derive the term t from its set of terms XA using Dolev-Yao rules.

A can derive the assertion α from its set of assertions ΦA using the
system derivation rules (coming up on the next two slides).

When A receives assertion α (claiming to be) from B, the system checks that

α is signed by B.

B sent α out into the network earlier.

R Ramanujam, Vaishnavi S, S P Suresh Extending Dolev-Yao with Assertions  / 



Assertions – Syntax, Semantics

Derivation rules

X ⊢dy m
ax

X,Φ ⊢ m ≺ m

X ⊢dy st(t) ∩B
eq

X,Φ ⊢ t = t

X ⊢dy {t}k X ⊢dy k X,Φ ⊢ m ≺ t
enc

X,Φ ⊢ m ≺ {t}k

X ⊢dy inv(k) X,Φ ⊢ m ≺ {t}k
dec

X,Φ ⊢ m ≺ t

X ⊢dy (t, t) X,Φ ⊢ m ≺ ti X ⊢dy st(t−i) ∩B
pair

X,Φ ⊢ m ≺ (t, t)

X,Φ ⊢ m ≺ (t, t) X ⊢dy st(ti) ∩B m /∈ st(ti)
split

X,Φ ⊢ m ≺ t−i

Figure: The rules for atomic assertions

R Ramanujam, Vaishnavi S, S P Suresh Extending Dolev-Yao with Assertions  / 



Assertions – Syntax, Semantics

More derivation rules

ax
X,Φ ∪ {α} ⊢ α

X,Φ ⊢ m ≺ {b}k X,Φ ⊢ n ≺ {b}k
� (m ≠ n; b ∈B)

X,Φ ⊢ α

X,Φ ⊢ α X,Φ ⊢ α
∧i

X,Φ ⊢ α ∧ α

X,Φ ⊢ α ∧ α
∧e

X,Φ ⊢ αi

X,Φ ⊢ αi
∨i

X,Φ ⊢ α ∨ α

X,Φ ⊢ α ∨ α X,Φ ∪ {α} ⊢ β X,Φ ∪ {α} ⊢ β
∨e

X,Φ ⊢ β

Figure: Rules for propositional reasoning

R Ramanujam, Vaishnavi S, S P Suresh Extending Dolev-Yao with Assertions  / 



Complexity results

Outline

 Introduction

 Example

 Assertions – Syntax, Semantics

 Complexity results

 Manipulating assertions

 Concluding remarks

R Ramanujam, Vaishnavi S, S P Suresh Extending Dolev-Yao with Assertions  / 



Complexity results

Derivability Problem and complexity

Derivability Problem: Given a set of terms X and a set of assertions Φ, and
an assertion α, determine if X,Φ ⊢ α via the rules given earlier.

This problem is co-NP-hard and in PSPACE.

However, if we bound the number of disjunctions in α, the problem is
solvable in PTIME.

R Ramanujam, Vaishnavi S, S P Suresh Extending Dolev-Yao with Assertions  / 



Manipulating assertions

Outline

 Introduction

 Example

 Assertions – Syntax, Semantics

 Complexity results

 Manipulating assertions

 Concluding remarks

R Ramanujam, Vaishnavi S, S P Suresh Extending Dolev-Yao with Assertions  / 



Manipulating assertions

What about forwarding?

Suppose B wants to forward an assertion α it received from A to agent C.

Scenario is quite common in protocols employing delegation.

We want to disallow B from just sending α in its own name.

How to achieve this, then?

B sends C an assertion of the form A says α.

Again, think of the underlying network as being a verifying authority. B
basically tells the authority to approach A for a proof of α.

The set A of assertions is now given by the following syntax

α ∶= m ≺ t ∣ t = t′ ∣ α ∨ α ∣ α ∧ α ∣ A says α

R Ramanujam, Vaishnavi S, S P Suresh Extending Dolev-Yao with Assertions  / 



Manipulating assertions

What about forwarding?

Suppose B wants to forward an assertion α it received from A to agent C.

Scenario is quite common in protocols employing delegation.

We want to disallow B from just sending α in its own name.

How to achieve this, then?

B sends C an assertion of the form A says α.

Again, think of the underlying network as being a verifying authority. B
basically tells the authority to approach A for a proof of α.

The set A of assertions is now given by the following syntax

α ∶= m ≺ t ∣ t = t′ ∣ α ∨ α ∣ α ∧ α ∣ A says α

R Ramanujam, Vaishnavi S, S P Suresh Extending Dolev-Yao with Assertions  / 



Manipulating assertions

Checks and derivations for says

On receiving α from A, B adds A says α to its assertion set ΦB. Other checks
and updates remain the same.

X,Φ ⊢ A says (m ≺ {b}k) X,Φ ⊢ A says (n ≺ {b}k)
� (m ≠ n; b ∈B)

X,Φ ⊢ A says α

X,Φ ⊢ A says α X,Φ ⊢ A says α
∧i

X,Φ ⊢ A says (α ∧ α)

X,Φ ⊢ A says (α ∧ α)
∧e

X,Φ ⊢ A says αi

X,Φ ⊢ A says αi
∨i

X,Φ ⊢ A says (α ∨ α)

X,Φ ⊢ A says (α ∨ α) X,Φ ∪ {A says α} ⊢ A says β X,Φ ∪ {A says α} ⊢ A says β
∨e

X,Φ ⊢ A says β

Figure: Rules for says

R Ramanujam, Vaishnavi S, S P Suresh Extending Dolev-Yao with Assertions  / 



Concluding remarks

Outline

 Introduction

 Example

 Assertions – Syntax, Semantics

 Complexity results

 Manipulating assertions

 Concluding remarks

R Ramanujam, Vaishnavi S, S P Suresh Extending Dolev-Yao with Assertions  / 



Concluding remarks

Conclusion and future work

Described a framework to add assertions to the Dolev-Yao model.

Makes for concise and more readable certification in protocols.

Also have key complexity results about this model.

Future work: better assertion structure, tighter complexity bounds etc.

R Ramanujam, Vaishnavi S, S P Suresh Extending Dolev-Yao with Assertions  / 



Concluding remarks

Thank you!

R Ramanujam, Vaishnavi S, S P Suresh Extending Dolev-Yao with Assertions  / 


	Introduction
	Example
	Assertions – Syntax, Semantics
	Complexity results
	Manipulating assertions
	Concluding remarks

