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Why deterministic automata?

@ Model-checking needs only nondeterminstic Biichi automata (NBAs)
for emptiness checking
@ Deterministic automata needed for important problems like
e Synthesis of reactive modules for LTL specifications
e Model-checking Markov decision processes

o NBA to deterministic Rabin automaton (DRA)
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What [1] does

Considers the (F, G)-fragment of LTL for direct translation to DRAs

Constructs deterministic Muller automaton for input formula ¢

States are formulas, not atoms (maximal consistent set of
subformulas)

Efficiently transforms this to a standard DRA
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(F, G)-fragment of LTL: Syntax

ppedri=al-aloNY |V |Fpl|Gp

where a € Ap, Ap a finite fixed set of atomic propositions.

@ Standard abbreviations: tt := aV —a,ff:= a A —a
@ Push negations inside to atomic propositions, Fa = -G—a

@ No X or U allowed in formulas!
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(F, G)-fragment of LTL: Semantics

Word w = w[0]w[1]--- € (24P)¥
it suffix of w: w; = wlilw[i +1]---

wi=a <= ac wl0]

w = —a <= a¢ wl0]
wEeANY) <= wEypand w ¢
WiV = w g orw

wEFp <= FJk>0w E o
wEGp —= Yk>0w o
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Symbolic one-step unfolding A

Example 1

$U(F(GaV Gb)

(GaV Gb) V XF(Ga V Gb)
U(Ga) vV U(Gb) vV XF(Ga Vv Gb)
(aAXGa)V (bAXGb)V XF(GaV Gb)
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Notation

For ¢, an arbitrary but fixed formula

F,G: Sets of all subformulae of ¢ of form Fi, Gy respectively
T :=FUG: Set of all temporal formulae

XV := {X¢ | ¢ € W} for a set of formulae W

C(p) := ApU{—a| ae Ap} UXT is the closure of ¢

. Ci
states(y) is the set 22 )

1, x: Element of states(y), positive Boolean formula over C(¢p)

a, B: One-step history of the word read
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More notation

e For 1) € states(y) and oo C Ap, red(¢, «), called the a-reduct of 9, is
the formula got by:
e Replacing all a € a not occurring inside a modal context in 1) by tt.
o Replacing all a € Ap\ « not inside a modal context in ¢ by ff
e red(¢, ) is a positive boolean combination of formulas of the form
X1’ where 9" € T.
@ Since X distributes over A and V, red(v, «) is equivalent to Xy where
X is a positive Boolean formula over T.
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Deterministic Automaton

For a formula ¢, we define A(¢) = (Q, i, 0) to be a deterministic finite
automaton over ¥ = 24P where

o Set of states Q = {i} U (states(y) x 2°7)
o Initial state /
@ Transition function § can be partitioned into the two following sets

o {(i,cx, (4U(), a))}
o {((v, ), B, (X tred(1),q)), B)) | (¥, ) € Q, 8 € L}

where X149 removes Xs from ).
Intuitively, a state (1, &) corresponds to the situation where « is being
read and v needs to be satisfied.
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Example: ¢ = F(GaV Gb)

U(p) = (aAXGa) vV (b AXGb) V (XFyp)

{b} {a,b}

Figure: Automaton A, for F(GaV Gb)
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Example: ¢ = F(GaV Gb)

e Words A, should accept: ababab(a)®, ababa(b)“, a“ etc
e Words A, should reject: (ab)*, (aba)“ etc
@ Both a and b false in state A: A cannot be in a Muller accepting set.

e {B,C,D} not a Muller accepting set: neither Ga nor Gb is eventually
made true.

e {B},{C} and {D} are Muller accepting sets for runs (a)“, ({a, b} )"
and (b)“ respectively

e {B,C} and {C, D} are Muller accepting sets for runs (a{a, b})“ and
(b{a, b})“ respectively

Muller accepting sets for A, = {{B},{C},{D},{B,C},{C,D}}
Corresponding Rabin pairs for A, = ({B, C},{A,D}),({C, D}, {A, B})
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Muller acceptance condition

Muller acceptance condition

A set M C Q is Muller accepting for ¢ if there is a set | C T such that
the following are satisfied:

@ Ci: For each (x,a) € M, we have X/ =, ¥,
@ (,: For each Fip € [, there is (x, ) € M with | =4 9,
@ Gs: For each Gy € I and for each (x,a) € M, | =4 9,

where | |=,, x is shorthand for saying that | = red(x, ) is (an instance
of) a propositional tautology.

@ M is Muller accepting for ¢ if it is Muller accepting for some /.

@ Acceptance condition for (: Set of all Muller accepting sets
{My, My, - - }.
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Example: ¢ = F(GaV Gb)

T ={{Ga},{Gb}, ¢} [={Ga}CT
x = U(¢) = (a A XGa) vV (b A XGb) V XFp

Condition Required Possible choices for M
G Epr XGa = red(x, a) {B},{C},{B, C}
G No F conditions in / {B},{C},{B,C}
G Ep. Ga = red(a, ) {B},{C},{B,C}

Each of {B},{C} and {B, C} is Muller accepting for | = {Ga}.
Doing this for each | C T, we get

Acceptance condition for ¢ : {{B},{C},{D},{B, C},{C,D}}
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Correctness

Theorem 1

Let ¢ be a formula and w a word. Then w is accepted by the
deterministic automaton A(y) with the Muller condition M(y) iff w = .

Proposition 1.1 (Finitary correctness)

Let w be a word and A(p)(w) = i(x0,@0)(x1, 1) - the corresponding
run. Then, for all n € N, we have w = ¢ iff w, = xp.

Proposition 1.2 (Completeness)
If w = ¢ then InfA(¢)(w)) is a Muller accepting set.

M := Inf(A(¢)(w)) is Muller accepting for
I'={peF|wEGpu{yecCG|wkFy}
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Soundness

Proposition 1.3

Let p be a run. If Inf(p) is Muller accepting for I, then
e Ap(p) = G for each ¢y € INTF and
e Ap(p) = Fy foreachp € ING

Proposition 1.4 (Soundness)
If InflLA(¢)(w)) is a Muller accepting set then w = ¢.
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Generalized Rabin automaton
A generalized Rabin automaton is a deterministic w-automaton =(Q, i, )

together with a generalized Rabin condition GR € BT(29 x 29). A run p
of A is accepting if Inf(p) = GR.

For a formula ¢, the generalized Rabin condition GR () is

VI H{ca) [ THEax A A\ oh @) A A 0A(¢a) [ Faw))

ICT Gyel Fwel

Proposition 1.5

Let ¢ be a formula and w a word. Then w is accepted by the deterministic
automaton A(y) with the generalized Rabin condition GR () iff w = ¢.

Can efficiently obtain a set of Rabin pairs for ¢ from GR(¢p).
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Summary

Summary

Considers only reachable state space
In state (, @), a only records letters from x

Smaller automata than Itl2dstar for most fairness conditions

More optimizations in the Rabinizer tool [2]
o Redundant states removed
o Merges conjunctions of “compatible” Rabin pairs
e One-step history considers equivalence classes of letters
o No special initial state without any other use
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Summary
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Summary

Thank you!
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