From LTL to Deterministic ω -automata

Vaishnavi Sundararajan

Chennai Mathematical Institute

Formal Methods Update Meeting IIT Delhi July 27 & 28, 2013

Outline

1 Introduction

- 2 Linear Temporal Logic
- 3 Deterministic Automata
- 4 Muller acceptance condition
- 5 Rabin condition

Why deterministic automata?

- Model-checking needs only nondeterministic Büchi automata (NBAs) for emptiness checking
- Deterministic automata needed for important problems like
 - Synthesis of reactive modules for LTL specifications
 - Model-checking Markov decision processes
- NBA to deterministic Rabin automaton (DRA)

What [1] does

- $\bullet\,$ Considers the (F, G)-fragment of LTL for direct translation to DRAs
- ullet Constructs deterministic Muller automaton for input formula φ
- States are formulas, not atoms (maximal consistent set of subformulas)
- Efficiently transforms this to a standard DRA

(F, G)-fragment of LTL: Syntax

$$\varphi, \psi \in \Phi ::= a \mid \neg a \mid \varphi \land \psi \mid \varphi \lor \psi \mid \mathbf{F}\varphi \mid \mathbf{G}\varphi$$

where $a \in Ap$, Ap a finite fixed set of atomic propositions.

- Standard abbreviations: $\mathbf{tt} := a \lor \neg a$, $\mathbf{ff} := a \land \neg a$
- Push negations inside to atomic propositions, $\mathbf{F}a = \neg \mathbf{G} \neg a$
- No X or U allowed in formulas!

(**F**, **G**)-fragment of LTL: Semantics

Word
$$w = w[0]w[1] \cdots \in (2^{Ap})^{\omega}$$

 i^{th} suffix of w : $w_i = w[i]w[i+1] \cdots$

$$w \models a \iff a \in w[0]$$
$$w \models \neg a \iff a \notin w[0]$$
$$w \models \varphi \land \psi \iff w \models \varphi \text{ and } w \models \psi$$
$$w \models \varphi \lor \psi \iff w \models \varphi \text{ or } w \models \psi$$
$$w \models F\varphi \iff \exists k \ge 0 \ w_k \models \varphi$$
$$w \models \mathbf{G}\varphi \iff \forall k \ge 0 \ w_k \models \varphi$$

Symbolic one-step unfolding $\mathfrak U$

$$\begin{split} \mathfrak{U}(a) &= a\\ \mathfrak{U}(\neg a) &= \neg a\\ \mathfrak{U}(\varphi \land \psi) &= \mathfrak{U}(\varphi) \land \mathfrak{U}(\psi)\\ \mathfrak{U}(\varphi \lor \psi) &= \mathfrak{U}(\varphi) \lor \mathfrak{U}(\psi)\\ \mathfrak{U}(\mathsf{F}\varphi) &= \mathfrak{U}(\varphi) \lor \mathsf{X}\mathsf{F}\varphi\\ \mathfrak{U}(\mathsf{G}\varphi) &= \mathfrak{U}(\varphi) \land \mathsf{X}\mathsf{G}\varphi \end{split}$$

Example 1

$$\begin{aligned} \mathfrak{U}(\mathsf{F}(\mathsf{G}a \lor \mathsf{G}b) &= \mathfrak{U}(\mathsf{G}a \lor \mathsf{G}b) \lor \mathsf{X}\mathsf{F}(\mathsf{G}a \lor \mathsf{G}b) \\ &= \mathfrak{U}(\mathsf{G}a) \lor \mathfrak{U}(\mathsf{G}b) \lor \mathsf{X}\mathsf{F}(\mathsf{G}a \lor \mathsf{G}b) \\ &= (a \land \mathsf{X}\mathsf{G}a) \lor (b \land \mathsf{X}\mathsf{G}b) \lor \mathsf{X}\mathsf{F}(\mathsf{G}a \lor \mathsf{G}b) \end{aligned}$$

For φ , an arbitrary but fixed formula

- \mathbb{F}, \mathbb{G} : Sets of all subformulae of φ of form $\mathbf{F}\psi, \mathbf{G}\psi$ respectively
- $\mathbb{T}:=\mathbb{F}\cup\mathbb{G}\colon$ Set of all temporal formulae
- $\mathbf{X}\Psi := \{\mathbf{X}\psi \mid \psi \in \Psi\}$ for a set of formulae Ψ
- $\mathbb{C}(\varphi) := Ap \cup \{ \neg a \mid a \in Ap \} \cup X\mathbb{T}$ is the *closure* of φ
- states(φ) is the set $2^{2^{\mathbb{C}(\varphi)}}$
- ψ, χ : Element of states(φ), positive Boolean formula over $\mathbb{C}(\varphi)$
- α, β : One-step history of the word read

More notation

- For ψ ∈ states(φ) and α ⊆ Ap, red(ψ, α), called the α-reduct of ψ, is the formula got by:
 - Replacing all $a \in \alpha$ not occurring inside a modal context in ψ by **tt**.
 - Replacing all $a \in Ap \setminus \alpha$ not inside a modal context in ψ by **ff**
- red (ψ, α) is a positive boolean combination of formulas of the form $\mathbf{X}\psi'$ where $\psi' \in \mathbb{T}$.
- Since **X** distributes over \land and \lor , red (ψ, α) is equivalent to **X** χ where χ is a positive Boolean formula over \mathbb{T} .

Deterministic Automaton

For a formula φ , we define $\mathcal{A}(\varphi) = (Q, i, \delta)$ to be a deterministic finite automaton over $\Sigma = 2^{Ap}$, where

- Set of states $Q = \{i\} \cup (\mathsf{states}(\varphi) \times 2^{Ap})$
- Initial state i
- $\bullet\,$ Transition function $\delta\,$ can be partitioned into the two following sets
 - { $(i, \alpha, \langle \mathfrak{U}(\varphi), \alpha \rangle)$ } • { $(\langle \psi, \alpha \rangle, \beta, \langle \mathfrak{U}(\mathbf{X}^{-1} \mathsf{red}(\psi, \alpha)), \beta \rangle) \mid \langle \psi, \alpha \rangle \in Q, \beta \in \Sigma$ }

where $\mathbf{X}^{-1}\psi$ removes \mathbf{X} s from ψ .

Intuitively, a state (ψ, α) corresponds to the situation where α is being read and ψ needs to be satisfied.

Example: $\varphi = \mathbf{F}(\mathbf{G}a \vee \mathbf{G}b)$

$$\mathfrak{U}(arphi) = (a \wedge \mathsf{XG}a) \vee (b \wedge \mathsf{XG}b) \vee (X\mathsf{F}arphi)$$

Figure: Automaton \mathcal{A}_{φ} for $\mathbf{F}(\mathbf{G}a \vee \mathbf{G}b)$

Example: $\varphi = \mathbf{F}(\mathbf{G}a \vee \mathbf{G}b)$

- Words \mathcal{A}_{φ} should accept: $ababab(a)^{\omega}$, $ababa(b)^{\omega}$, a^{ω} etc
- Words \mathcal{A}_{φ} should reject: $(ab)^{\omega}$, $(aba)^{\omega}$ etc
- Both a and b false in state A: A cannot be in a Muller accepting set.
- {*B*, *C*, *D*} not a Muller accepting set: neither **G***a* nor **G***b* is eventually made true.
- {B}, {C} and {D} are Muller accepting sets for runs (a)^ω, ({a, b})^ω and (b)^ω respectively
- $\{B, C\}$ and $\{C, D\}$ are Muller accepting sets for runs $(a\{a, b\})^{\omega}$ and $(b\{a, b\})^{\omega}$ respectively

Muller accepting sets for $\mathcal{A}_{\varphi} = \{\{B\}, \{C\}, \{D\}, \{B, C\}, \{C, D\}\}$

Corresponding Rabin pairs for $\mathcal{A}_{\varphi} = (\{B, C\}, \{A, D\}), (\{C, D\}, \{A, B\})$

Muller acceptance condition

A set $M \subseteq Q$ is *Muller accepting* for φ if there is a set $I \subseteq \mathbb{T}$ such that the following are satisfied:

- C_1 : For each $(\chi, \alpha) \in M$, we have $XI \models_{\alpha} \chi$,
- **2** C_2 : For each $\mathbf{F}\psi \in I$, there is $(\chi, \alpha) \in M$ with $I \models_{\alpha} \psi$,
- **3** C_3 : For each $\mathbf{G}\psi \in I$ and for each $(\chi, \alpha) \in M$, $I \models_{\alpha} \psi$,

where $I \models_{\alpha} \chi$ is shorthand for saying that $I \implies \operatorname{red}(\chi, \alpha)$ is (an instance of) a propositional tautology.

- *M* is Muller accepting for φ if it is Muller accepting for some *I*.
- Acceptance condition for φ : Set of all Muller accepting sets $\{M_1, M_2, \cdots\}$.

Example: $\varphi = \mathbf{F}(\mathbf{G}a \lor \mathbf{G}b)$

$$\mathbb{T} = \{ \{ \mathsf{G}a \}, \{ \mathsf{G}b \}, \varphi \} \quad I = \{ \mathsf{G}a \} \subseteq \mathbb{T}$$
$$\chi = \mathfrak{U}(\varphi) = (a \land \mathsf{X}\mathsf{G}a) \lor (b \land \mathsf{X}\mathsf{G}b) \lor \mathsf{X}\mathsf{F}\varphi$$

Condition	Required	Possible choices for M
<i>C</i> ₁	$\models_{PL} XGa \implies red(\chi, \alpha)$	$\{B\}, \{C\}, \{B, C\}$
<i>C</i> ₂	No F conditions in <i>I</i>	$\{B\}, \{C\}, \{B, C\}$
<i>C</i> ₃	$\models_{PL} Ga \implies red(a, \alpha)$	$\{B\}, \{C\}, \{B, C\}$

Each of $\{B\}, \{C\}$ and $\{B, C\}$ is Muller accepting for $I = \{Ga\}$. Doing this for each $I \subseteq T$, we get

Acceptance condition for φ : {{B}, {C}, {D}, {B, C}, {C, D}}

Correctness

Theorem 1

Let φ be a formula and w a word. Then w is accepted by the deterministic automaton $\mathcal{A}(\varphi)$ with the Muller condition $\mathcal{M}(\varphi)$ iff $w \models \varphi$.

Proposition 1.1 (Finitary correctness)

Let w be a word and $\mathcal{A}(\varphi)(w) = i(\chi_0, \alpha_0)(\chi_1, \alpha_1) \cdots$ the corresponding run. Then, for all $n \in \mathbb{N}$, we have $w \models \varphi$ iff $w_n \models \chi_n$.

Proposition 1.2 (Completeness)

If $w \models \phi$ then $Inf(\mathcal{A}(\phi)(w))$ is a Muller accepting set.

 $M := \ln f(\mathcal{A}(\phi)(w))$ is Muller accepting for

$$I := \{ \psi \in \mathbb{F} \mid w \models \mathbf{G}\psi \} \cup \{ \psi \in \mathbb{G} \mid w \models \mathbf{F}\psi \}$$

Soundness

Proposition 1.3

Let ρ be a run. If $Inf(\rho)$ is Muller accepting for I, then

- $Ap(\rho) \models \mathbf{G}\psi$ for each $\psi \in \mathbf{I} \cap \mathbb{F}$ and
- $Ap(\rho) \models \mathbf{F}\psi$ for each $\psi \in I \cap \mathbb{G}$

Proposition 1.4 (Soundness)

If $Inf(\mathcal{A}(\phi)(w))$ is a Muller accepting set then $w \models \phi$.

Generalized Rabin automaton

A generalized Rabin automaton is a deterministic ω -automaton =(Q, i, δ) together with a generalized Rabin condition $\mathcal{GR} \in \mathcal{B}^+(2^Q \times 2^Q)$. A run ρ of \mathcal{A} is accepting if $Inf(\rho) \models \mathcal{GR}$.

For a formula φ , the generalized Rabin condition $\mathcal{GR}(\varphi)$ is

$$\bigvee_{I\subseteq\mathbb{T}}\left(\left(\{(\chi,\alpha)\mid I\not\models_{\alpha}\chi\wedge\bigwedge_{\mathbf{G}\psi\in I}\psi\}, Q\right)\wedge\bigwedge_{\mathbf{F}\omega\in I}(\emptyset,\{(\chi,\alpha)\mid I\models_{\alpha}\omega\})\right)$$

Proposition 1.5

Let φ be a formula and w a word. Then w is accepted by the deterministic automaton $\mathcal{A}(\varphi)$ with the generalized Rabin condition $\mathcal{GR}(\varphi)$ iff $w \models \varphi$.

Can efficiently obtain a set of Rabin pairs for φ from $\mathcal{GR}(\varphi)$.

- Considers only reachable state space
- In state ($\chi, lpha$), lpha only records letters from χ
- Smaller automata than Itl2dstar for most fairness conditions
- More optimizations in the Rabinizer tool [2]
 - Redundant states removed
 - Merges conjunctions of "compatible" Rabin pairs
 - One-step history considers equivalence classes of letters
 - No special initial state without any other use

Bibliography

Jan Kretínský and Javier Esparza: Deterministic Automata for the (F, G)-Fragment of LTL CAV (2012) 7–22.

Andreas Gaiser, Jan Kretínský and Javier Esparza: Rabinizer: Small Deterministic Automata for LTL(F, G) ATVA (2012) 72–76.

Thank you!