Deciding trace equivalence for protocols with asymmetric operations

Véronique Cortier
LORIA, CNRS

Stéphanie Delaune
Univ Rennes, CNRS, IRISA

Vaishnavi Sundararajan

CSF, Hoboken, NJ
June 2019
Trace equivalence:

- Trace equivalence: “Can the intruder differentiate between two scenarios?

- Useful for formalising unlinkability, strong secrecy etc.

- Strong secrecy: Does a scenario with secret m look different from one with a random r?
Deciding trace equivalence

- Trace equivalence: Undecidable in general!
- Decidable under restrictions: much work on bounded sessions, no nonces etc. Unrealistic!
- CCD15 presents a decidability result with unbounded sessions for \{senc, pair\}.
- We extend this result for asymmetric primitives.

Main result

Trace equivalence is decidable for simple, type-compliant protocols with acyclic dependency graphs.
Restrictions on protocols

Trace equivalence is decidable for simple, type-compliant protocols with acyclic dependency graphs.

Each process operates on a distinct channel.

Actions uniquely tied to sessions.
Restrictions on protocols

Trace equivalence is decidable for simple, type-compliant protocols with acyclic dependency graphs.

Unifiable “encrypted” subterms get same type

(Achievable via tagging)

Bounds size of messages in witness search
Restrictions on protocols

Trace equivalence is decidable for simple, type-compliant protocols with acyclic dependency graphs.

Captures sequential and data dependencies

Bounds length of witness trace
Denning-Sacco with signature

\[A \xrightarrow{aenc(sign(\langle A, B \rangle, k), sk(A)), pub(B))} B \]

\[A \xleftarrow{senc(m, k)} B \]
Can decide trace equivalence for many protocols now!

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Type compliant</th>
<th>Acyclic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denning-Sacco (sign)</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Needham-Schroeder (aenc)</td>
<td>After tagging</td>
<td>✗</td>
</tr>
<tr>
<td>Needham-Schroeder-Lowe (aenc)</td>
<td>After tagging</td>
<td>✔</td>
</tr>
<tr>
<td>E-Passport Passive Authentication</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>E-Passport Active Authentication</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>

Thank you!