
Undecidability of the Secrecy Problem

Weshow that the secrecyproblem for security protocols is in general undecidable, evenwhen
only considering well-typed runs. We use a reduction from the reachability problem for two-
counter machines.

1 Two-counter machines

A two-counter machine (2CM) is a tuple M = (Q,F, q0,δ) where Q is a set of states, F ⊆ Q is
the set of final states, and q0 � Q is the initial state. The transition relation is given by δ ⊆
Q× {0, 1}2 ×Q× {−1,0, 1}2, where the values denote, in order, the current state, the status of each
counter (zero/non-zero), the next state, and the action to be performed on each counter. For any
(q, i1, i2, q′, j1, j2) � δ, we enforce the condition that jk = −1 implies ik = 1 (for k = 1, 2). This allows
us to decrement only a positive counter.
A configuration of such a machineM is a triple (q,n1,n2) with q � Q being the current state and

nk � N the two counters. A transition t = (q, i1, i2, q′, j1, j2) is enabled at a configuration c = (q,n1,n2)
iff ik = 0 iff nk = 0 for k = 1, 2. (Wewill now skip the “k = 1, 2” to increase readability, as our results
apply equally to both counters.) If t is enabled at c, we have (q,n1,n2)

t−→ (q′,n1 + j1,n2 + j2).
The initial configuration is c0 = (q0, 0, 0). A configuration c is reachable if c0

∗−→ c. A configu-
ration (q,n1,n2) is final if q � F. The reachability problem for 2CMs is to determine whether, for
a given machineM, a final configuration ofM is reachable. This problem is known to be unde-
cidable [1, 2]. For a given 2CMM = (Q,F, q0,δ), we will define a corresponding protocol Pr such
that a final configuration is reachable inM iff PrM admits a “leaky run”, i.e. a run at the end of
which the intruder can derive a designated “secret”.

2 Well-typed runs: Undecidability

Assume a set of fresh names N such that Q ⊆ N . Consider two fixed names z and d. Also
consider two fixed agents A and Bwho share the key kab �K . For u,u′ �N and q � Q, we define:

[q,u,u′] def= senc((q, (u,u′)), kab) and [u,u
′] def= senc((u,u′), kab)

We now define PrM as the protocol consisting of constantsC and rolesR as follows:

1

• C = Q ∪ {A,B, z,d, s} (with s the designated secret that will be leaked ifM admits a run
from the initial configuration to a final one)

• R = {η0}∪ {ηt | t � δ}∪ {ηf | f � F} is the set of roles of the protocol, which we will define in
detail presently.

Informally, we try to set up the roles such that by following this sequence of roles that mir-
ror the transitions ofM, the intruder gets a chain of values of the form [q,u,u′], starting from
[q0, 0, 0]. (The name z uniquely stands for the counter value zero.) This chain is such that if ever
a value of the form [f,u, v] (for some f � F) is received by the intruder, the final role immediately
also sends the designated secret s in the open to the intruder, and so we have a breach of secrecy.
The roles are defined as follows. The initial role outputs a coding of the initial configuration

to the intruder, along with some other information. (d is a ‘dummy’ name that we will use to
code up the initial configuration. We will shortly illustrate how these names are used.)

η0
def= A!B : [d,d], [q0, z, z], [d,d]

For every transition t = (q, i1, i2, q′, j1, j2) � δ, we define ηt
def= a · a′ with

a = A?B : [u1, v1], [q,w1,w2], [u2, v2] and a
′ = A!B : (N)[u′1, v

′
1], [q

′,w′1,w
′
2], [u

′
2, v
′
2]

whereN = {v′k | k � {1, 2} and jk = 1} is the set of new names generated by A for this send action.
The code for the configuration looks like [q,w1,w2], where w1,w2 �N are names that represent

the values of the two counters, and q is the current state of the 2CM.We say that a name u rep-
resents a natural number n if there is a ‘chain’ of length n of the form [z,u1], [u1,u2], . . . , [un−1,u],
where all these terms are in the intruder’s database, and all the names are distinct.
Informally, we wish to receive a code for the current configuration from the intruder (along

with some bookkeeping information), make the changes necessitated by the transition t in the
2CM, and then send a code for this new configuration to the intruder (potentially along with
some new changed information). Essentially, the bookkeeping information is there only to in-
dicate whether some name codes up a non-zero integer or not, and we will now describe via
examples how this information is used.
Consider a decrement action first. A decrement of a counter is allowed only if the counter is

positive. Therefore, if jk = −1 for some k � {1, 2} in t, there better be some way for us to check that
ik is indeed non-zero in the current configuration, and then decrement the value of counter k. In
particular, we can use our notion of a name coding up a counter value in order to do this check.
If one of the counters (say counter 1) has a non-zero value (say r, coded up by the name u), we
expect the intruder to have a chain starting from [z,u1] all the way to [ur−1,u]. So if A receives a
term of the form [ur−1,u], along with the term [q,u,w2], A is convinced that u is indeed non-zero
(since the intruder managed to derive this [ur−1,u] term, presumably from the chain all the way

2

to u that he has access to), and can therefore execute a decrement action on counter 1. Having
decremented, the new term will nowmention ur−1 as the new value for counter 1.
On the other hand, for an increment action, we wish to extend the chain in the intruder’s

database by the new pair of the form [u,u′], where u coded up the old counter value, and u′ codes
up the new value (which is the old value incremented by 1). So our bookkeeping technique in
this case would mandate that A picks a new name u′ (which now becomes part of the set N of
new names generated for that action), and constructs such a pair [u,u′] to be sent as part of the
send action a′ in the role corresponding to this transition t, in addition to the new configuration
which mentions u′ as the new value for the incremented counter.
Keeping all this in mind, we show here a few illustrative examples for how the roles for

various transitions t look. We also provide a generalization from these cases later. Suppose
t = (q, 0, 1, q′, 0, 0). This transition is enabled when the first counter is zero and the second is
not. There is no change to the counter values. So, as part of the receive action, A receives a term
coding up this configuration, and the last part of the chain that certifies that counter 2 is non-
zero. A sends out only a term representing the configuration. So the role is a · a′, where:

a = A?B : [q, z, v2], [u2, v2] and a
′ = A!B : [q′, z, v2]

Now suppose t = (q, 0, 1, q′, 1, 1). The first counter is zero, while the second is not, and both
counters are being incremented. The receive action looks the same as for the previous example.
However, for the send action, we now need to increment both counters, and extend the respec-
tive chains with the new counter values. The role is a · a′, where:

a = A?B : [q, z, v2], [u2, v2] and a
′ = A!B : ({v′1, v

′
2})[z, v

′
1], [q

′, v′1, v
′
2], [v2, v

′
2]

Now suppose t = (q, 1, 1, q′, 0,−1). Both counters are positive, and only the second counter is
decremented. As proof of the positivity of the counters,A receives a configuration term and two
chain terms. The new counter value for counter 2 comes from the chain received for counter 2,
while counter 1’s value remains unchanged. No chains need to be extended, so only one term
representing the new configuration is sent out. The role is a · a′, where:

a = A?B : [u1, v1], [q, v1, v2], [u2, v2] and a
′ = A!B : [q′, v1,u2]

Having seen all these examples, we are now ready to provide the general description for a role
marking a transition in the 2CM. Since we are fitting roles into a general template involving a
configuration term and two chain terms, for examples of the previous sort where there is only
one term sent out, the chain terms are taken to be [d,d] by fiat. Sending this term to the intruder
does not change anything since η0 has anyway sent this term to the intruder.
For every transition t = (q, i1, i2, q′, j1, j2) � δ, we define ηt

def= a · a′ with
a = A?B : [u1, v1], [q,w1,w2], [u2, v2] and a

′ = A!B : (N)[u′1, v
′
1], [q

′,w′1,w
′
2], [u

′
2, v
′
2]

3

where N = {v′k | k � {1, 2} and jk = 1}, and the following conditions hold for each pair [i, j]: (we
omit the subscript k everywhere, these apply equally for either value of k)

1. [0, 0]: w = w′ = z and u = v = u′ = v′ = d

2. [0, 1]: u′ = w = z and u = v = d and v′ = w′ 6�C
3. [1, 0]: w′ = w = v and u′ = v′ = d and u 6= v 6�C
4. [1, 1]: w = v = u′ and w′ = v′ and u 6= v 6= v′ 6�C
5. [1,−1]: w = v and w′ = u and u′ = v′ = d and u 6= v 6�C
For each final state f � F, ηf

def= a · a′ where
a = A?B : [f,w1,w2] and a

′ = A!B : s and w1 6= w2 6�C .
Having set all thismachinery up, we nowneed to prove that this protocol does indeed admit

a breach of secrecy if and only if a final configuration is reachable in M. This requires a few
lemmas. Firstly, observe that the intruder never gets to know the key shared between A and B.

Obs 1. Suppose ρ is a run of PrM and ks = (XA)A�A is the knowledge state at the end of ρ. Then, XI ⊬ kab.
Wenowmake the idea of coding up state-specific – a name u represents a number n in a state

ks if there is a chain of length n of the form [z,u1], [u1,u2], . . . , [un−1,u] such that each of these terms
belong to XI in ks. We can lift this notion to representing in a run ρ if the ks considered is the
global knowledge state at the end of ρ.
Using these, we now get to the crucial lemmas that show that the role ηt faithfully simulates

the transition t inM. We will use the following notation: t = (q, i1, i2, q′, j1, j2) and ηt = a ·a′, where
a = A?B : [u1, v1], [q,w1,w2], [u2, v2] and a′ = A!B : (N)[u′1, v′1], [q′,w′1,w′2], [u′2, v′2].
Suppose ρ is a run of PrM and ks the global knowledge state at the end of ρ. Also suppose that

t is a transition ofM, ηt = a · a′, and (q,n1,n2) a configuration ofM represented in ks.
Lemma 2. If t is enabled at (q,n1,n2), then there is a well-typed substitution σ suitable for ηt in PrM s.t:

• σ(wk) represents nk in ks

• σ(a) is enabled at ks and σ(a′) at the state ks′ obtained by the transition (ks,σ(a))

• σ(w′k) represents nk + jk in ks
′′, the state obtained by the transition (ks,σ(a · a′)).

Proof.

Suppose t is enabled at (q,n1,n2). Then ik = 0 iff nk = 0. Also suppose that the name rk represents
nk in ks. We now define a σ suitable for PrM and ηt as follows.

4

• σ(wk) = rk, and σ is identity onC
• For each fresh m � N generated for use in the action involved in t, σ(m) is a distinct name
not appearing in ks.

• If ik = 1 then σ(uk) = r′k, where r
′
k represents nk − 1 in ks. (Since ik = 1 and t is enabled at the

current configuration, nk = 1. Combined with the fact that rk represents nk in ks, there is at
least one such r′k that we can pick, from the intruder’s chain.)

It is evident that σ is well-typed and suitable for ηt. Wemerely need to show that it satisfies
the three properties required by the lemma. The first follows immediately by the definition,
since rk represents nk at ks.
We now show that σ(a) is enabled at ks. Note that (q,n1,n2) is represented in ks by [q, r1, r2],

and therefore XI ` [q, r1, r2]. Now, we just need to show that XI ` σ([uk, vk]). Two cases arise.
• ik = 0: In this case, uk = vk = d. Now, any run in PrM starts with the role η0, and this role
only has one send action, which sends out [d,d] to the network. Thus, XI ` [d,d].
• ik = 1: In this case, vk = wk. Sinceσ(uk) = r′k (by the definition ofσ), we have thatσ([uk, vk]) =
[r′k, rk], and since σ(wk) = rk (and wk is non-zero), XI ` [r′k, rk] and we are done.
Showing that σ(a′) is enabled at ks′ is easier. Note that the term sent in a′ is derivable using

N, kkab and the term received in action a, for all u, v and w values – all of which belong to ks
′. Thus,

X′A ` [u′1, v′1], [q′,w′1,w′2], [u′2, v′2], which is the only criterion for σ(a′) being enabled at ks′.
We now show that σ(w′k) represents nk + jk in ks

′′. Three cases arise.

• jk = 0: Simplest case, wk = w′k and done.

• jk = −1: By definition, σ(uk) represents nk−1, and w′k = uk according to our role description.
Since the intruder database grows monotonically, σ(uk) = σ(w′k) continues to represent
nk − 1 in ks

′′.

• jk = 1: According to our role description, wk = u′k and w
′
k = v

′
k. Also note that by the up-

date resulting from executing a′ at ks′, in the resultant state ks′′, the intruder has X′′I `
[σ(u′k),σ(v

′
k)]. Since σ(wk) = σ(u

′
k) continues to represent nk in ks

′′ (by monotonicity), and
[σ(u′k),σ(v

′
k)] extends the intruder’s ‘chain’ by one, we have that σ(w

′
k) = σ(v

′
k) represents

nk + 1 in ks
′′. �

Lemma 3. If there is a substitution σ suitable for ηt in PrM such that σ(wk) represents nk in ks and σ(a) is
enabled at ks, then t is enabled at (q,n1,n2).

Proof. Suppose σ is such a suitable substitution. In order to show that t is enabled at (q,n1,n2),
we need to show that ik = 0 iff nk = 0. Two cases arise, one where ik = 0 and one where ik = 1.

5

• ik = 0: By the role description, wk = z, and hence σ(wk) = z. Since z uniquely represents
only 0 in any state, and we know that σ(wk) represents nk, nk = 0.

• ik = 1: By the role description, wk = vk and uk 6= vk.
L3.1 From a being enabled at ks, we know that XI ` [q,σ(w1),σ(w2)]. Now, for any term of
the form [q, t, t′] derivable by the intruder, t, t′ 6= d (from our role description).

L3.2 The only term of the form [t, t] derivable by the intruder is [d,d] (since such a term
only gets into the intruder’s database at the initial role – every other role extends the
chain by a different name).

L3.3 For any term of the form [t, t′] derivable by the intruder where t 6= t′, we have t′ 6= z (a
chain cannot be extended with zero, since all names along a chain are distinct, and
every chain begins with zero).

From L3.1, we know that σ(wk) = σ(vk) 6= d. Since XI ` [σ(uk),σ(vk)] (by the enabledness
of a at ks), this fact combined with L3.2 gives us σ(uk) 6= σ(vk). Finally, by applying L3.3 to
this fact, we have σ(vk) 6= z. However, since σ(wk) = σvk , we have that σ(wk) 6= z, and since z
uniquely represents 0, we have that nk 6= 0, and this concludes the proof. �

Theorem 4. (q0, 0, 0)
∗−→ (q,n1,n2) iff (q,n1,n2) is represented in some run of PrM iff it is represented in some

well-typed run of PrM.

Proof. We prove this in two parts.

T4.1 First we prove that if (q0, 0, 0)
∗−→ (q,n1,n2), then there is a well-typed run of PrM which

represents (q,n1,n2). This proof is by induction on the length of the derivation (q0, 0, 0)
∗−→

(q,n1,n2). The base case is when this length is 0, in which case q = q0 and nk = 0. Then the
run (η0,σ, 1) gives us the result, for any well-typed substitution σ which is identity onC .
In the casewhere this length is non-zero, suppose (q0, 0, 0)

∗−→ (q,n1,n2) t−→ (q′,n′1,n′2). By IH,
there is a run ρ of PrM which represents (q,n1,n2). Let ks be the final state of ρ. There is a
well-typed substitutionσ suitable for ηt inPrMwhich obeys the conditions inLemma2. In
particular, σ(w′k) represents nk + jk = n

′
k in the state obtained by the transition (ks,σ(ηt)). It

is not hard to see that we can extend ρwith σ(a) ·σ(a′) to get awell-typed run of PrM. Since
σ(w′k) represents n

′
k at the end of this run, this new well-typed run represents (q,n

′
1,n′2).

T4.2 We show that if there is a run ρ of PrM in which (q,n1,n2) is represented, then (q0, 0, 0)
∗−→

(q,n1,n2). This proof is by induction on the length of ρ. For the base case, with a run of
length 0, the statement is vacuously true.

In the casewhere the runhas positive length, suppose (q′,n′1,n′2) is representedby [q′,w′1,w′2]
in a run ρ = ρ′ · e (where e is a final action) of PrM. Let ks and ks′ be the final states at the

6

ends of ρ and ρ′ respectively. If (q′,n′1,n′2) is already represented in ρ′, then by IH, we get
(q0, 0, 0)

∗−→ (q′,n′1,n′2). Otherwise, X′I ` [q′,w′1,w′2] in ks, but X′′I ⊬ [q′,w′1,w′2] in ks′.
Note that since I does not have access to kab, and a term of the form [q′,w′1,w′2] cannot be
obtained by applying elimination rules to any term I already had access to in ks′, it must
be the case that this term was added to database due to the update caused by the event
e. Therefore, in particular, e is a send event (since receive events do not cause changes to
the intruder’s database), and [q′,w′1,w′2] is a term obtained by applying some elimination
rule(s) to the terms occurring in e. Hence, e can be of two kinds:

• e = (η0,σ, 1): The only such term sent out by e is [q0, z, z], so (q′,n′1,n′2) = (q0, 0, 0).

• e = (ηt,σ, 2) for some t � δ: Note that in this case, the last event of ρ′ must be (ηt,σ, 1).
It is clear that the knowledge state in ρ′ just before the event (ηt,σ, 1) represents the
configuration (q,n1,n2) (where the n′ values in (q′,n′1,n′2) are such that n′k = nk + jk). Since
this is a proper prefix of ρ′ and also a valid run of PrM, by IH, we know that (q0, 0, 0)

∗−→
(q,n1,n2). By Lemma 3, we know that t is enabled at (q,n1,n2), and thus we can extend
the path in the 2CM to get (q0, 0, 0)

∗−→ (q′,n′1,n′2). �

Theorem 5. Afinal configuration is reachable inM iff there is a leaky run of PrM iff there is a well-typed leaky
run of PrM.

Proof. Wefirst prove that if a final configuration is reachable inM then there is awell-typed leaky
run of PrM. Suppose (q0, 0, 0)

∗−→ (f,n1,n2) for f � F. Then, by Lemma 4, there is a well-typed run ρ
of PrM representing (f,n1,n2). If ks is the knowledge state at the end of ρ, we have thatXI ` [f, r1, r2]
for names r1, r2. Hence the sequence of events e1 · e2 is enabled at ks, where ei = (ηf,σ, i) for i = 1, 2,
and some well-typed σ such that σ(x) 6= σ(y) for all y 6= x. It then follows that ρ · e1 · e2 is also a
well-typed but leaky run of PrM.
We now prove that if there is a leaky run of PrM then a final configuration is reachable inM.

Suppose there is such a leaky run ρ. Such a run would include an instance of ηf for some f � F.
However, this requires some configuration of the form (f,n1,n2) to be represented by a term in ρ,
and by Lemma 4, we have that (f,n1,n2) is reachable inM. �

Thus, we get that the secrecy problem is undecidable.

References

[1] Wikipedia. Two counter machines are Turing-equivalent. https://tinyurl.com/und2cm

[2] Hopcroft, J. E. and Ullman, J. D. Introduction to AutomataTheory, Languages, and Compu-
tation. 1979. ISBN 81-85015-96-1. (Section 7.8)

7

