Normalization and Subterm Property

Vaishnavi Sundararajan

Definition I (Term syntax). A message is modelled as a term. The set of terms \mathscr{T} is generated using the following grammar.

$$
t:=m\left|\left(t_{1}, t_{2}\right)\right| \operatorname{aenc}(t, \mathbf{p k}(k))
$$

where $m, k, t, t_{1}, t_{2} \in \mathscr{T}$, and m and k are "atomic" terms, i.e. terms without pairing or encryption.
Definition 2 (Proof system). The proof system for this term algebra is shown in Table I . If there is a proof of $X \vdash t$ using these rules, we denote it by $X \vdash_{p e} t$. The rules in the left column are destructors, while those in the right column are constructor rules.

For any $X \cup t \subseteq \mathscr{T}, X \vdash t$ is a sequent, and to be read as " X derives t ". In a sequent, we will often refer to X and t as the LHS and RHS respectively. In any proof rule, every sequent that appears above the line is called a premise, and the sequent that appears below the line is called the conclusion of said rule. In this system, a proof rule can have up to two premises. The leftmost premise is often called the major premise.

$\frac{X \vdash m}{} \mathbf{a x}(m \in X)$	$\frac{X \vdash \mathbf{p k}(k)}{} \mathbf{p k}$
$\frac{X \vdash\left(t_{1}, t_{2}\right)}{X \vdash t_{i}} \mathbf{~ s p l i t ~}$	$\frac{X \vdash t \quad X \vdash u}{X \vdash(t, u)} \mathbf{p a i r}$
$\frac{X \vdash \mathbf{a e n c}(t, \mathbf{p k}(k)) \quad X \vdash k}{X \vdash t} \mathbf{a d e c}$	$\frac{X \vdash t \quad X \vdash \mathbf{p k}(k)}{X \vdash \mathbf{a e n c}(t, \mathbf{p k}(k))} \mathbf{a e n c}$

Table I: Proof system for a term algebra with pairing and asymmetric encryption

Definition 3 (Normal proof). A normal proof is one where the major premise of a destructor rule is not obtained by the application of a constructor rule.

Theorem 4. Any proof in the above system can be converted into a normal proof.
Proof. Consider a proof π of minimal size witnessing $X \vdash t$. Suppose this proof is not normal i.e. there is a subproof ξ of $X \vdash u$ such that ξ ends in a destructor rule, and the major premise of ξ is yielded by some constructor rule. We will show how to replace ξ by a smaller proof of $X \vdash u$, thus contradicting the minimality of π.

There are two possible cases, one for each of the destructor rules. One can see that the constructor yielding the major premise for a destructor rule must be the one that "corresponds" to the destructor; one cannot, for example, have aenc provide the major premise for the split rule.
ξ ends in split: There exist two terms u_{0} and u_{I} such that u is either u_{0} or u_{I}, and ξ has the structure as on the left. u_{i} is derived using a proof π_{i} (it does not matter what rule π_{i} ends in). We can pick one of the premises of the pair rule, and obtain a normal proof equivalent to ξ, as shown on the right.

ξ ends in adec: There exist two terms u_{0} and k such that an aenc produces the asymmetric encryption of u_{0} with $\mathbf{p k}(k)$, which is then decrypted using adec to produce ξ, as shown on the left. We once again pick the major premise of the aenc rule to obtain the normal proof equivalent to ξ, as shown on the right.

Thus, we see that no conclusion of a constructor rule serves as the leftmost premise of a destructor rule in a minimal proof π of $X \vdash t$. Hence, π is a normal proof of $X \vdash t$.

QED
Definition 5 (Subterms of a term). The subterms of a term t are defined as all the subtrees of the term tree of t.

Theorem 6. Suppose π is a normal proof of $X \vdash t$. Consider a subproof ξ witnessing $X \vdash u$. Then, $u \in \boldsymbol{s t}(X \cup\{t\})$. In particular, if π ends in a destructor rule, $u \in \boldsymbol{s t}(X)$.
Proof. The proof proceeds by induction on the structure of π. Suppose π ends in a rule \mathbf{r}. The following cases arise when r is a destructor.
$\mathbf{r}=\mathbf{a x}:$ In this case, $t \in X$, and thus, $t \in \mathbf{s t}(X)$.
$\mathbf{r}=$ split: In this case, π has the following structure.

$$
\begin{gathered}
\tau_{0} \\
\vdots \\
\frac{X \vdash\left(t_{0}, t_{\mathrm{r}}\right)}{X \vdash t_{i}} \text { split }
\end{gathered}
$$

The subproof π_{0} does not contain any constructor rules (since that would lead to nonnormality). Hence, by induction hypothesis, $\left(t_{0}, t_{\mathrm{I}}\right) \in \boldsymbol{\operatorname { s t }}(X)$, and hence $t_{i} \in \boldsymbol{\operatorname { s t }}(X)$ for $i \in$ $\{0, I\}$.
$\mathbf{r}=\mathbf{a d e c}:$ In this case, π has the following structure.

The subproof π_{0} does not contain any constructor rules (since that would lead to nonnormality). Hence, again by IH , aenc $\left(t_{0}, \mathbf{p k}(k)\right) \in \mathbf{s t}(X)$, and hence $t_{0} \in \mathbf{s t}(X)$.

Now, when \mathbf{r} is a constructor, we have some more leeway.
$\mathbf{r}=\mathbf{p k}$: In this case, there is no premise. From any X, one can always derive $\mathbf{p k}(k)$ for any k. $\mathbf{p} \mathbf{k}(k) \in \mathbf{s t}(\mathbf{p} \mathbf{k}(k)) \subseteq \mathbf{s t}(X \cup\{\mathbf{p k}(k)\})$, and we are done.
\mathbf{r} = pair: In this case, π has the following structure.

By IH, $t_{i} \in \boldsymbol{s t}\left(X \cup\left\{t_{i}\right\}\right)$ for $i \in\{0, \mathrm{r}\}$. Thus, $\left(t_{0}, t_{\mathrm{I}}\right) \in \boldsymbol{s t}\left(X \cup\left\{t_{0}, t_{\mathrm{I}}\right\}\right)$. We can prove the claim similarly for when $\mathbf{r}=$ aenc.

