Normalization and Subterm Property

Vaishnavi Sundararajan

Definition 1 (Term syntax). A message is modelled as a term. The set of terms \mathcal{T} is generated using the following grammar.

$$t := m \mid (t_1, t_2) \mid \mathbf{aenc}(t, \mathbf{pk}(k))$$

where $m, k, t, t_1, t_2 \in \mathcal{T}$, and m and k are "atomic" terms, i.e. terms without pairing or encryption.

Definition 2 (Proof system). The proof system for this term algebra is shown in Table I. If there is a proof of $X \vdash t$ using these rules, we denote it by $X \vdash_{pe} t$. The rules in the left column are *destructors*, while those in the right column are *constructor* rules.

For any $X \cup t \subseteq \mathcal{T}$, $X \vdash t$ is a sequent, and to be read as "X derives t". In a sequent, we will often refer to X and t as the LHS and RHS respectively. In any proof rule, every sequent that appears above the line is called a *premise*, and the sequent that appears below the line is called the *conclusion* of said rule. In this system, a proof rule can have up to two premises. The leftmost premise is often called the *major premise*.

$\frac{1}{X \vdash m} \mathbf{ax}(m \in X)$	$\frac{1}{X \vdash \mathbf{pk}(k)} \mathbf{pk}$
$\frac{X \vdash (t_1, t_2)}{X \vdash t_i} \text{ split}$	$\frac{X \vdash t X \vdash u}{X \vdash (t, u)} \operatorname{pair}$
$\frac{X \vdash aenc(t, pk(k)) X \vdash k}{X \vdash t} \text{ adec}$	$\frac{X \vdash t X \vdash pk(k)}{X \vdash aenc(t, pk(k))} \text{ aenc}$

Table 1: Proof system for a term algebra with pairing and asymmetric encryption

Definition 3 (Normal proof). A *normal proof* is one where the major premise of a destructor rule is not obtained by the application of a constructor rule.

Theorem 4. Any proof in the above system can be converted into a normal proof.

Proof. Consider a proof π of minimal size witnessing $X \vdash t$. Suppose this proof is not normal – i.e. there is a subproof ξ of $X \vdash u$ such that ξ ends in a destructor rule, and the major premise of ξ is yielded by some constructor rule. We will show how to replace ξ by a smaller proof of $X \vdash u$, thus contradicting the minimality of π .

There are two possible cases, one for each of the destructor rules. One can see that the constructor yielding the major premise for a destructor rule must be the one that "corresponds" to the destructor; one cannot, for example, have **aenc** provide the major premise for the **split** rule.

 ξ ends in split: There exist two terms u_0 and u_1 such that u is either u_0 or u_1 , and ξ has the structure as on the left. u_i is derived using a proof π_i (it does not matter what rule π_i ends in). We can pick one of the premises of the **pair** rule, and obtain a normal proof equivalent to ξ , as shown on the right.

$$\frac{\stackrel{\pi_{\circ}}{\vdots} \quad \stackrel{\pi_{i}}{\vdots}}{\frac{X \vdash u_{\circ} \quad X \vdash u_{i}}{X \vdash (u_{\circ}, u_{i})}} \operatorname{pair} \implies \stackrel{\pi_{i}}{\vdots} \\ \frac{X \vdash u_{\circ} \quad X \vdash u_{i}}{X \vdash u_{i}} \operatorname{split}$$

 ξ ends in adec: There exist two terms u_o and k such that an **aenc** produces the asymmetric encryption of u_o with $\mathbf{pk}(k)$, which is then decrypted using **adec** to produce ξ , as shown on the left. We once again pick the major premise of the **aenc** rule to obtain the normal proof equivalent to ξ , as shown on the right.

$$\frac{\stackrel{\pi_{\circ}}{\vdots}}{\frac{X \vdash u_{\circ}}{X \vdash \mathbf{pk}(k)}} \frac{\mathbf{pk}}{\operatorname{aenc}} \stackrel{\pi_{k}}{\vdots} \qquad \Longrightarrow \qquad \stackrel{\pi_{\circ}}{\underset{X \vdash u_{\circ}}{\vdots}} \frac{\chi \vdash \mathbf{pk}(k)}{\operatorname{aenc}} \stackrel{\pi_{\circ}}{\underset{X \vdash k}{\Rightarrow}} \xrightarrow{\chi \vdash u_{\circ}}$$

Thus, we see that no conclusion of a constructor rule serves as the leftmost premise of a destructor rule in a minimal proof π of $X \vdash t$. Hence, π is a normal proof of $X \vdash t$.

QED

Definition 5 (Subterms of a term). The subterms of a term *t* are defined as all the subtrees of the term tree of *t*.

Theorem 6. Suppose π is a normal proof of $X \vdash t$. Consider a subproof ξ witnessing $X \vdash u$. Then, $u \in st(X \cup \{t\})$. In particular, if π ends in a destructor rule, $u \in st(X)$.

Proof. The proof proceeds by induction on the structure of π . Suppose π ends in a rule **r**. The following cases arise when **r** is a destructor.

r = **ax**: In this case, $t \in X$, and thus, $t \in st(X)$.

 $\mathbf{r} = \mathbf{split}$: In this case, π has the following structure.

$$\frac{\overset{\pi_{o}}{\vdots}}{\overset{X\vdash(t_{o},t_{i})}{X\vdash t_{i}}} \operatorname{split}$$

The subproof π_{\circ} does not contain any constructor rules (since that would lead to nonnormality). Hence, by induction hypothesis, $(t_{\circ}, t_{I}) \in \mathbf{st}(X)$, and hence $t_{i} \in \mathbf{st}(X)$ for $i \in \{0, I\}$.

 $\mathbf{r} = \mathbf{adec:}$ In this case, π has the following structure.

$$\frac{X \vdash \operatorname{aenc}(t_{\circ}, \operatorname{pk}(k)) \quad X \vdash k}{X \vdash t_{\circ}} \operatorname{adec}^{\pi_{I}}$$

The subproof π_{\circ} does not contain any constructor rules (since that would lead to nonnormality). Hence, again by IH, **aenc**(t_{\circ} , **pk**(k)) \in **st**(X), and hence $t_{\circ} \in$ **st**(X).

Now, when **r** is a constructor, we have some more leeway.

- **r** = **pk**: In this case, there is no premise. From any *X*, one can always derive $\mathbf{pk}(k)$ for any *k*. $\mathbf{pk}(k) \in \mathbf{st}(\mathbf{pk}(k)) \subseteq \mathbf{st}(X \cup \{\mathbf{pk}(k)\})$, and we are done.
- **r** = **pair**: In this case, π has the following structure.

$$\frac{\substack{\pi_{o} \qquad \pi_{I}}{\vdots \qquad \vdots}}{X \vdash t_{o} \quad X \vdash t_{I}} \mathbf{pair}$$

By IH, $t_i \in st(X \cup \{t_i\})$ for $i \in \{0, 1\}$. Thus, $(t_0, t_1) \in st(X \cup \{t_0, t_1\})$. We can prove the claim similarly for when **r** = **aenc**.

QED