
Formal verification of security protocols

Lecture 9, 18 September 2023

COL876: SPECIAL TOPICS IN FORMAL METHODS

RECAP

Overarching theme: “Dolev-Yao model” = “intruder is network”

Saw two ways of formalizing security protocol execution

As a transition system over knowledge states

As a labelled transition system over tuples involving a multiset
of processes, a substitution, and fresh names

A DIFFERENT PERSPECTIVE

In all this, what are we really interested in?

Most of the time, just intruder knowledge

Why maintain anything that detracts from that?

Other agents’ knowledge states, remaining processes etc

Somehow capture intruder knowledge as a function of the
current state of execution?

INTRUDER KNOWLEDGE

Predicate K(t) means “Intruder knows t”

Can always recast our derivation system as a system over K(t)
rather than t itself

 etc

Okay, but what about the actual execution?

X ⊢ K(t1) and X ⊢ K(t2) ⟹ X ⊢ K((t1, t2))

INTRUDER KNOWLEDGE

Any send puts a term out onto the channel

the intruder picks it up

Any receive picks up a term from the channel

the intruder should have been able to generate said term

Can think of a protocol description as a sequence of receives and sends

each receive implies a corresponding send

can cast these as implications over intruder knowledge!

EXAMPLE

The first send can be modelled as follows

The second one can be modelled as follows

{} ⟹ K((A, enc(m, pk(B))))

K((A, enc(m, pk(B)))) ⟹ K(enc(m, pk(A)))

BAN LOGIC [1990]

Convert a protocol into a series of derivation rules over intruder
knowledge

Combine with background theory (term derivation system)

Check for a derivation of the intruder’s knowing a secret!

So why not just do this?

BAN LOGIC [1990]

Convert a protocol into a series of derivation rules over intruder
knowledge

Hard to do correctly!

Need extra operators to capture freshness etc

Ideal: implications between receives and sends without
converting entire protocol into intruder knowledge

MULTISET REWRITING IN TAMARIN

States: Multisets of “facts”

Special facts: Fr(t), In(t), Out(t), K(t)

Rules l—[a]—r move the system from one state to another

A fact is not “persistent” by default (gets consumed by a rule!)

MULTISET REWRITING IN TAMARIN

Rules l—[a]—r move the system from one state to another

Transition corresponding to this rule: S —[a]—> (S\l) (r)

Execution is a path through states

For each n, Fr(n) only appears once to the RHS of a transition

Trace corresponding to an execution, each transition of which is
labelled by ai : [a1a2…an]

σ ∪ σ

MULTISET REWRITING IN TAMARIN

What does A do? Assume a PKI in place, then, for the first action:

 Choose fresh m

 Choose a B

 Construct and send enc(m, pk(B))

MULTISET REWRITING IN TAMARIN

rule init1:

 let t = enc(m, pk(~ltk)) in

 [Fr(~m), !Ltk($B, ~ltk)] - -[FirstSend(~m, $B)]-> [Out(t)]

rule Register_pk:

 [Fr(~ltk)] - -> [!Ltk($A, ~ltk), !Pk($A, pk(~ltk))]

