
Formal verification of security protocols

Lecture 7, 17 August 2023

COL876: SPECIAL TOPICS IN FORMAL METHODS

QUIZ!

I. Write out the following protocol in the applied-pi calculus.

II. Write the equational theory for XOR with identity 0. XOR is associative
and commutative.

III.When can one get multiple reduction sequences from a single
configuration? List out all possible scenarios.

BONUS: Is there a bound on the number of such sequences? If yes, what is it?

RECAP

Saw how to use ProVerif for automated verification

Wrote a simple protocol and properties in ProVerif

ProVerif tries to prove a property; if it cannot be proved, tries to
produce an attack trace

Saw that ProVerif can often produce bizarre error traces, and
needs some help to produce a “reasonable” error trace

PROVERIF: SYNTAX

Crypto operations specified using equations or rewrite rules

Declare types, constructor functions, and reduction rules for
destructors before starting a protocol description

Declare the desired property using the query keyword

Enriched terms: allow one to include new, if then else etc
in term syntax

ENRICHED TERM SYNTAX

PROVERIF: NATURAL NUMBERS

ProVerif has a type nat to represent natural numbers

One can add and subtract a number i from a term t (t+i, i+t, t-i)

One can also test for order on terms (>, <, >=, <=, =, <>)

Constructors cannot have type nat, but destructors can

type key.

fun enc5(nat, key) : bitstring.

fun dec5(bitstring, key) : nat.

reduc forall x:nat, y:key; dec5(enc5(x+5, y), y) = y.

PROVERIF: EQUATIONS

Suppose I add multiplication over objects of some new type prd

Express that multiplication is commutative? Use equation

Equations need to be convergent (terminating and confluent rewriting)
and linear (variables occur at most once in LHS and at most once in RHS)

type prd.

fun mult(prd, prd) : prd.

equation forall x:prd, y:prd; mult(x, y) = mult(y, x).

PROVERIF: STORAGE

Can model persistent storage using table

Can populate (insert) and access (get) entries, but not delete

Tables are not accessible to the attacker

table d(t1,…,tn).

insert d(M1,…,Mn); P.

get d(u1,…,un) in P else Q.

get d(u1,…,un) suchthat M in P else Q.

PROVERIF: PROPERTIES

Secrecy specified as intruder knowledge: query attacker(t)

Properties can involve events

Correspondence queries specified as implications over events:
query x:t, y:t; event(x, y) ==> event(y, x)

What about an event Place-order(t) and an event Cust-pays(t)?

PROVERIF: PROPERTIES

Secrecy specified as intruder knowledge: query attacker(t)

Can check for any reachability property this way

Is term M sent on channel c? query mess(c, M)

Is (t1,…,tn) present in table d? query table(d(t1,…,tn))

Does ev occur? query x1:t1,…,xn:tn; event (ev(x1,…,xn))

PROVERIF: PROPERTIES

Correspondence queries specified as implications over events: query
x:t; ev1(x) ==> ev2(x)

If ev1 has happened, then ev2 has happened (for the same x)

What about an event Place-order(x) and an event Cust-pays(x)?

inj-event allows us to specify a one-to-one correspondence

query x:t; inj-event(order(x)) ==> inj-event(paid(x))

PROVERIF: PROPERTIES

But what about temporal order?

If an order has been placed, the payment was done before

ProVerif has type time; can mark events with timestamp

query x:t, i:time, i’:time;
inj-event(order(x))@i ==>
(inj-event(paid(x))@i’ && i’ < i)

