
Formal verification of security protocols

Lecture 6, 14 August 2023

COL876: SPECIAL TOPICS IN FORMAL METHODS

APPLIED-PI CALCULUS: GRAMMAR

P, Q := plain process

 0 [null process]

 P | Q [parallel composition]

 !P [replication]

 n.P [name restriction]

 if t1 = t2 then P else Q [conditional branching]

 in(c, x).P [receive action]

 out(c, t).P [send action]

 let x = t in P [let binding]

ν

RECAP

Saw how to convert protocols in arrow notation to programs at each end-point

Convert these programs into applied-pi notation

Put these together to get the whole protocol in applied-pi

Suffices to consider in parallel the following for every generated agent:

replicated instance of each role !Pi(ski, pkr), !Pr(skr)

replicated instance of an intruder supplying the public key for any such
parameter in any role !in(c, xpk). Pi(ski, xpk)

Add any extra bookkeeping (monitor processes, events etc) for verifying properties

TODAY

Easy to write out protocols and expected properties

What does it mean to verify them? Consider all

possible instantiations of variables

possible unfoldings of any replication

reduction sequences starting at the initial configuration

Non-trivial while also relatively mechanical; needs automation

PROVERIF PROTOCOL VERIFIER

https://bblanche.gitlabpages.inria.fr/proverif/

Automatic cryptographic protocol verifier

Can handle unboundedly many sessions of the protocol

Tries to prove a property; if it cannot be proved, tries to produce an
attack trace

Suffers from false negatives (a claimed attack might not “really” be an
attack) but is sound; if a property is proved true, it is indeed true

https://bblanche.gitlabpages.inria.fr/proverif/

PROVERIF: UNDER THE HOOD

Horn clauses + resolution for the protocol and negated property

Any derivation of this provides an attack trace

Attack might be due to some abstraction with Horn clauses,
but if not, it violates the property

Otherwise, property holds of the protocol

PROVERIF: SYNTAX

Input: Protocol in ~applied-pi calculus and security property

Terms appearing in the process must be typed

ProVerif checks for well-typedness of the process

But not of the property! Allows detection of type-flaw attacks

Crypto operations specified using equations or rewrite rules

 𝖿𝗌𝗍(x, y) → x 𝗌𝗇𝖽(x, y) → y 𝖺𝖽𝖾𝖼(𝖺𝖾𝗇𝖼(x, 𝗉𝗄(y)), y) → x

RUNNING EXAMPLE

Pi(ski, pkr) n. out(c, aenc(n, pkr)). in(c, x). if(adec(x, ski)==n) then SUCCESS

Pr(skr) in(c, y). let pka = fst(y) in. let z = adec(y, skr) in. out(c, aenc(z, pka))

Pr ! sk.(!in(c, xpk). Pi(sk, xpk) | !Pr(sk) | out(c, pk(sk)))

≜ ν

≜

≜ ν

PROVERIF: CRYPTO OPERATIONS

Declare two types, pkey and skey, using the type keyword

Declare two functions pk and aenc along with params and types

Constructors declared using fun keyword

Declare a equation defining the operation of the adec function

Using reduc and universally quantified terms

Tuples have in-built support; no need to do anything explicitly

EXAMPLE: CRYPTO OPERATIONS

type skey.

type pkey.

fun pk(skey): pkey.

fun aenc(bitstring, pkey): bitstring.

reduc forall t: bitstring, k: skey; adec(aenc(t, pk(k)), k) = t.

PROVERIF: SPECIFYING PROTOCOLS

The channel keyword declares a public channel

For any other free name, use free keyword

Free names and constructors known to intruder by default

If not, modify using the private keyword

Can specify reachability/secrecy checks using query attacker

Then specify roles and the overall protocol process

EXAMPLE: ROLES

let init(ski:skey, pkr:pkey) =

 new s: bitstring;

 out(c, (pk(ski), aenc(s, pkr))) ; 
 in(c, x: bitstring); 
 let y = adec(x, ski) in

 if (y = s) then out(c, SUCCESS).

let resp(skr:skey) =  
 in(c, (k: pkey, x: bitstring)); 
 let z = adec(x, skr) in

 out(c, aenc(z, k)).

EXAMPLE: PROTOCOL

process 
!new sk:skey;

 (

 out(c, pk(sk)) |

 (!in(c, x:pkey);init(sk,x)) |

 (!resp(sk))

)

PROVERIF SYNTAX

Identifiers: an unlimited sequence of letters, digits, _, and ’.

But must begin with a letter!

Boolean operators: &&, ||, not Constants: true, false Equality: = and <>

ProVerif does some minimal pattern matching; can use in let

x : t matches any term of type t and stores it in x

Similarly a tuple pattern (t1, …, tn) matches tuples of this type

=M matches any term equal to M; basically an equality check!

PROVERIF SYNTAX

Is !P | Q the same as !(P | Q) or (!P) | Q?

Parallelism | binds most closely

Then if… then… else and let… in

Finally unary operations (replication, name restriction etc)

Where do the parentheses go in the following?

new n : t; out(c, n) | new n : t; in(c, x : t) | if x = n then 0 | out(c, n)

PROVERIF SYNTAX

Parallelism | binds most closely

Then if… then… else and let… in

Finally unary operations (replication, name restriction etc)

Where do the parentheses go in the following?

new n : t; (out(c, n) | new n : t; in(c, x : t) | if x = n then (0 | out(c, n)))

PROVERIF SYNTAX

Parallelism | binds most closely

Then if… then… else and let… in

Finally unary operations (replication, name restriction etc)

Where do the parentheses go in the following?

if t = t′ then if u = u′ then P else Q

PROVERIF SYNTAX

Parallelism | binds most closely

Then if… then… else and let… in

Finally unary operations (replication, name restriction etc)

Where do the parentheses go in the following?

if t = t′ then (if u = u′ then P else Q)

