
Formal verification of security protocols

Lecture 4, 7 August 2023

COL876: SPECIAL TOPICS IN FORMAL METHODS

RECAP

Saw a high-level overview of the active intruder problem

Alternative presentation for inference: equational theories

 t := m | pk(k) | (t1, t2) | aenc(t, pk(k))

TODAY

A programming-style representation of protocols

Helps formalize some details we kept implicit so far

Needs us to utilize equational theories in the description

See how to write out protocols in this, the applied-pi calculus

APPLIED-PI CALCULUS: GRAMMAR

P, Q := plain process

 0 [null process]

 P | Q [parallel composition]

 !P [replication]

 n.P [name restriction]

 if t1 = t2 then P else Q [conditional branching]

 in(c, x).P [receive action]

 out(c, t).P [send action]

 let x = t in P [let binding]

ν

ALICE-BOB VS APPLIED-PI

Alice-Bob Notation Applied-Pi Calculus

Known set of agents Generate agents dynamically

Agents identified by name Agents identified by key

Only constructors for terms Both constructors & destructors

New terms: Inference system New terms: recipes

Received message is a pattern Received message is a variable

FORMALIZING EXECUTIONS

init(ski: skey, pkr: pkey) {

new n: bytes;

send(pk(ski), aenc(n,pkr));

recv(x: bytes);

if (adec(x,ski) !!=/= n)

error;

}

resp(skr: skey) {

recv(k: pkey, y: bytes);

let

z = adec(y, skr)

in

send(aenc(z,k));

}

FORMALIZING EXECUTIONS

init(ski: skey, pkr: pkey) {

new n: bytes;

send(pk(ski), aenc(n,pkr));

recv(x: bytes);

if (adec(x,ski) !!=/= n)

error;

}

Pi(ski, pkr)

 n. out(c, aenc(n, pkr)).

 in(c, x).

 if(adec(x, ski) == n) then

 SUCCESS

≜

ν

FORMALIZING EXECUTIONS

Pr(skr)

 in(c, y).

 let pka = fst(y) in

 let z = adec(y, skr) in

 out(c, aenc(z, pka))

≜
resp(skr: skey) {

recv(k: pkey, y: bytes);

let

z = adec(y, skr)

in

send(aenc(z,k));

}

A FIRST ATTEMPT

Pi(ski, pkr) n. out(c, aenc(n, pkr)). in(c, x). if(adec(x, ski)==n) then SUCCESS

Pr(skr) in(c, y). let pka = fst(y) in. let z = adec(y, skr) in. out(c, aenc(z, pka))

Have to put these two roles together to get an execution of the overall protocol?

Agent with key pk(ska) executes an instance of Pi, while the agent with key pk(skb)
executes an instance of Pr

We also output the agents’ public keys to make them available to the intruder

Pr1 ska. skb. (Pi(ska, pk(skb)) | Pr(skb) | out(c, pk(ska)) | out(c, pk(skb)))

≜ ν

≜

≜ ν ν

INTRUDER? WHAT INTRUDER?

Okay, so we captured the MitM attack on that protocol.

Recall that the adversary has a wide array of abilities

Most of these are not formalized in Pr2!

We do not a priori know the attack on a given protocol

Formalism needs to be able to find any possible attack

What about some attack where

the intruder mixes-and-matches terms, and

maybe requires A to talk to someone else? The intruder themselves, maybe?

A SECOND ATTEMPT

Pi(ski, pkr) n. out(c, aenc(n, pkr)). in(c, x). if(adec(x, ski)==n) then SUCCESS

Pr(skr) in(c, y). let pka = fst(y) in. let z = adec(y, skr) in. out(c, aenc(z, pka))

Explicitly model an instance of Pi where the agent with key ska talks to the intruder (who has
key skc)

skc is just a free name; free names by default accessible to the intruder

If the intruder starts a Pi instance, we only need to model a Pr instance by an honest agent

Pr2 ska. skb. (Pi(ska, pk(skb)) | Pi(ska, pk(skc)) | Pr(skb) |

 out(c, pk(ska)) | out(c, pk(skb)))

≜ ν

≜

≜ ν ν

A THIRD ATTEMPT

Pi(ski, pkr) n. out(c, aenc(n, pkr)). in(c, x). if(adec(x, ski)==n) then SUCCESS

Pr(skr) in(c, y). let pka = fst(y) in. let z = adec(y, skr) in. out(c, aenc(z, pka))

Allow the intruder to pick who starts a session with the agent executing Pi

Add an input to have the intruder “feed” any public key to the Pi role

Could be pk(ska) or pk(skb), or even the intruder’s own public key pk(skc)

Pr3 ska. skb. (in(c, xpk). Pi(ska, xpk) | Pr(skb) | out(c, pk(ska)) | out(c, pk(skb)))

≜ ν

≜

≜ ν ν

MORE MISSING ELEMENTS

Can have unboundedly many sessions in parallel

Need to add replication

A FOURTH ATTEMPT

Pi(ski, pkr) n. out(c, aenc(n, pkr)). in(c, x). if(adec(x, ski)==n) then SUCCESS

Pr(skr) in(c, y). let pka = fst(y) in. let z = adec(y, skr) in. out(c, aenc(z, pka))

Pr4 ska. skb.(!in(c, xpk). Pi(ska, xpk) | !Pr(skb) | out(c, pk(ska)) | out(c, pk(skb)))

Allow unboundedly many copies of the initiator role (talking to anyone the
intruder picks), and the responder role

Still not enough! What’s wrong now?

≜ ν

≜

≜ ν ν

A FIFTH (FINAL?) ATTEMPT

Pi(ski, pkr) n. out(c, aenc(n, pkr)). in(c, x). if(adec(x, ski)==n) then SUCCESS

Pr(skr) in(c, y). let pka = fst(y) in. let z = adec(y, skr) in. out(c, aenc(z, pka))

Pr5 ! ska.! skb.(!in(c, xpk). Pi(ska, xpk) | !Pr(skb) |
 !in(c, xpk). Pi(skb, xpk) | !Pr(ska) |

 out(c, pk(ska)) | out(c, pk(skb)))

Allow the same agent to play either role; allow unboundedly many honest agents

Can write this out more succinctly as follows:

Pr ! sk.(!in(c, xpk). Pi(sk, xpk) | !Pr(sk) | out(c, pk(sk)))

≜ ν

≜

≜ ν ν

≜ ν

INTRUDER KNOWLEDGE

Intruder controls network

Messages sent onto channel c added to intruder knowledge

Intruder stores every message along with a variable pointing to it

Denoted by a substitution σ = [x1 ↦ t1, …, xn ↦ tn]

dom(σ) = {x1, …, xn} and rng(σ) = {t1, …, tn}

Each ti a term without variables or destructors

Messages received from c should be derivable from σ

t is derivable from σ iff rng(σ) ⊢ t *

OTHER BOOKKEEPING

n.P evolves like the process P; uses a fresh name m in place of n

Fresh names are private; cannot be accessed by the intruder

Names outside the scope of a are assumed to be public

Have to keep track of all fresh names generated during a process

Processes involve replication; track a multiset of processes

ν

ν

CONFIGURATIONS

A configuration of a process is a triple where

 is a finite multiset of processes

 is a finite set of freshly generated names

σ is a finite substitution mapping variables to messages

An extended process is a configuration

For simplicity, we will write this as

Process evolution: transition (reduction) rules on configurations

𝒞 := (𝒫, ñ, σ)

𝒫

ñ

({P1, …, Pn}, ñ, σ)

νñ . (P1 ∣ … ∣ Pn ∣ σ)

REDUCTION RULES 1

REDUCTION RULES 2

P[t ↦ u] denotes P where each free t is replaced by u

m is fresh iff m names(rng(σ))∉ ñ ∪ names(𝒫 ∪ {P}) ∪

FRAMES

Attacker knowledge captured via a frame

A substitution with some bound names

The frame of a configuration is

For , we say if rng

Can also be expressed in terms of recipes

φ = νñ ⋅ σ

𝒞 = (𝒫, ñ, σ) φ(𝒞) := νñ ⋅ σ

φ = νñ ⋅ σ φ ⊢ t (σ) ∪ (𝒩∖ñ) ⊢ t

RECIPES

r is a -recipe for a term t if

vars(r) dom(σ)

names(r)

t =R rσ (where =R is the equational theory under consideration)

Note that any name not bound in can be used by the attacker

φ

⊆

∩ ñ = ∅

𝒞

NOW WHAT?

We now have an abstract formal model in which to formalize protocols

Now we need to specify properties as checks over this model

Interested in various properties

Secrecy (“nobody but <some parties> should know t”)

Authentication (“If A thinks she’s talking to B, B should have spoken to A”)

Agreement (“If A and B think they share value v with each other, that is the case”)

Privacy (“Nobody should know that agent A holds value a, even if A and a are
themselves publicly known values)…

PROPERTIES

Two main classes of properties: trace and equivalence

Trace: verified by examining one run of the protocol at a time

Secrecy: There is no run of the protocol where I knows m

Agreement: In every run of the protocol where A and B
participate, if A thinks they share some freshly-generated
value v with B, then B does share v with A.

SECRECY IN APPLIED-PI

m is secret in a protocol iff there is no run where the
configuration yields a frame which can derive m

m is bound under a operator in our example protocol

How do we even specify that m is intended to be secret?

ν

SECRECY: FORMALIZED

Rename bound variables to avoid name clashes

Use a monitor process annotated with events

A reduction sequence satisfies an event e(t) iff there is an i such that
e(t) appears in Pi

Let , and leak be an event that does not occur in P

Define Ps := (P’ | (in(c, x). if x = s then event leak(s) else 0))

s is secret in P iff there is no reduction sequence starting from Ps which satisfies leak(s)

P0
γ1 P1⋯

γn Pn

P = νs ⋅ P′

νs .

MORE TRACE PROPERTIES

Correspondence properties: “If an event e happened, then an event e’
must have happened before”

Examples: Authentication, agreement etc

Authentication: “If B finished an execution of the protocol with A,
then A must have started an execution with B earlier”

Agreement: “If B thinks they share a value v with A, then A must
have generated v for use with B”

Various flavours: aliveness, weak agreement, injective agreement &c.

CORRESPONDENCE: FORMALIZED

 denotes the following correspondence: “if
occurred in a run, then occurred earlier”

A reduction sequence satisfies a correspondence
 iff for any σ ,

whenever occurs in some Pi, there is a j i such that

 occurs in Pj

A process P satisfies a correspondence property iff all reduction
sequences starting from P satisfy it.

e0(⃗t0) ▹ e1(⃗t1) e1(⃗t1)
e0(⃗t0)

P0
γ1 P1⋯

γn Pn
e0(⃗t0) ▹ e1(⃗t1)

e1(⃗t1 σ) ≤

e0(⃗t0 σ)

EQUIVALENCE PROPERTIES

Equivalence: require simultaneous examination of multiple protocol runs, often
to ensure link between two values is secret

Strong Secrecy: The attacker should not be able to link an input of their
choice to the value of some observable variable.

Voter anonymity: The attacker should not be able to link a voter’s identity to
their vote.

Need to identify what differences the attacker can observe between multiple
runs

Simplest possible observation: does variable x map to the same term in all runs?

STATIC EQUIVALENCE

Frames & with &

Can learn the same terms from both frames

But need different recipes for the same term!

Capture ability to compare messages via static equivalence

Formalize what equalities the attacker can learn from a frame

φ1 φ2 σ1 = [x ↦ 0,y ↦ 1] σ2 = [x ↦ 1,y ↦ 0]

STATIC EQUIVALENCE

Consider a frame and terms t and u

We say iff there are and σ such that:

 (after appropriate variable renaming)

(names(t) names(u))

vars(t) vars(u) dom(σ)

tσ =R uσ

Two frames and are statically equivalent (denoted) iff

dom() = dom(), and

for any terms t and u, iff

φ ⊧ t =R u ñ

φ = νñ . σ

∪ ∩ ñ = ∅

∪ ⊆

φ1 = ν ñ1 . σ1 φ2 = νñ2 . σ2 φ1 ∼ φ2

σ1 σ2

φ1 ⊧ t =R u φ2 ⊧ t =R u

OBSERVATIONAL EQUIVALENCE

But what about a property like voter anonymity?

“The attacker should not be able to link a voter’s identity to
their vote”

Left implicit: “No matter what the attacker does”!

How do we formalize this bit?

OBSERVATIONAL EQUIVALENCE

Use contexts

A context is a process capturing intruder behaviour with a hole, where
we can plug in the process under examination

Quantifying over contexts captures all possible intruder behaviours

Two processes are observationally equivalent if

any sequence of reduction rules results in observationally equivalent
processes, and

if they remain observationally equivalent under any context

