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COL876: SPECIAL TOPICS IN FORMAL METHODS



RECAP

Saw a high-level overview of the active intruder problem 

Alternative presentation for inference: equational theories 

      t := m | pk(k) | (t1, t2) | aenc(t, pk(k)) 



TODAY

A programming-style representation of protocols 

Helps formalize some details we kept implicit so far 

Needs us to utilize equational theories in the description 

See how to write out protocols in this, the applied-pi calculus



APPLIED-PI CALCULUS: GRAMMAR

P, Q :=                plain process 

              0                                                  [null process] 

              P | Q                                         [parallel composition] 

              !P                                                [replication] 

              n.P                                            [name restriction] 

              if t1 = t2 then P else Q         [conditional branching] 

              in(c, x).P                                   [receive action]        

              out(c, t).P                                 [send action]  

              let x = t in P                            [let binding] 

ν



ALICE-BOB VS APPLIED-PI

Alice-Bob Notation Applied-Pi Calculus

Known set of agents Generate agents dynamically

Agents identified by name Agents identified by key

Only constructors for terms Both constructors & destructors

New terms: Inference system New terms: recipes

Received message is a pattern Received message is a variable



FORMALIZING EXECUTIONS

init(ski: skey, pkr: pkey) { 

new n: bytes;  

send(pk(ski), aenc(n,pkr));  

recv(x: bytes); 

if (adec(x,ski) !!=/= n)  

error; 

}

resp(skr: skey) { 

recv(k: pkey, y: bytes); 

let  

z = adec(y, skr) 

in 

send(aenc(z,k));  

}



FORMALIZING EXECUTIONS

init(ski: skey, pkr: pkey) { 

new n: bytes;  

send(pk(ski), aenc(n,pkr));  

recv(x: bytes); 

if (adec(x,ski) !!=/= n)  

error; 

}

Pi(ski, pkr)  

                           n. out(c, aenc(n, pkr)). 

                           in(c, x). 

                           if(adec(x, ski) == n) then             

                           SUCCESS

≜

ν



FORMALIZING EXECUTIONS

Pr(skr)  

                    in(c, y). 

                    let pka = fst(y) in 

                    let z = adec(y, skr) in 

                    out(c, aenc(z, pka))

≜
resp(skr: skey) { 

recv(k: pkey, y: bytes); 

let  

z = adec(y, skr) 

in 

send(aenc(z,k));  

}



A FIRST ATTEMPT

Pi(ski, pkr)  n. out(c, aenc(n, pkr)). in(c, x). if(adec(x, ski)==n) then SUCCESS 

Pr(skr)  in(c, y). let pka = fst(y) in. let z = adec(y, skr) in. out(c, aenc(z, pka)) 

Have to put these two roles together to get an execution of the overall protocol? 

Agent with key pk(ska) executes an instance of Pi, while the agent with key pk(skb) 
executes an instance of Pr 

We also output the agents’ public keys to make them available to the intruder 

Pr1  ska. skb. ( Pi(ska, pk(skb)) | Pr(skb) | out(c, pk(ska)) | out(c, pk(skb)) )

≜ ν

≜

≜ ν ν



INTRUDER? WHAT INTRUDER?

Okay, so we captured the MitM attack on that protocol. 

Recall that the adversary has a wide array of abilities  

Most of these are not formalized in Pr2! 

We do not a priori know the attack on a given protocol 

Formalism needs to be able to find any possible attack 

What about some attack where  

the intruder mixes-and-matches terms, and  

maybe requires A to talk to someone else? The intruder themselves, maybe?



A SECOND ATTEMPT

Pi(ski, pkr)  n. out(c, aenc(n, pkr)). in(c, x). if(adec(x, ski)==n) then SUCCESS 

Pr(skr)  in(c, y). let pka = fst(y) in. let z = adec(y, skr) in. out(c, aenc(z, pka)) 

Explicitly model an instance of Pi where the agent with key ska talks to the intruder (who has 
key skc) 

skc is just a free name; free names by default accessible to the intruder  

If the intruder starts a Pi instance, we only need to model a Pr instance by an honest agent 

Pr2  ska. skb. ( Pi(ska, pk(skb)) | Pi(ska, pk(skc)) | Pr(skb) |  

                                            out(c, pk(ska)) | out(c, pk(skb)) )

≜ ν

≜

≜ ν ν



A THIRD ATTEMPT

Pi(ski, pkr)  n. out(c, aenc(n, pkr)). in(c, x). if(adec(x, ski)==n) then SUCCESS 

Pr(skr)  in(c, y). let pka = fst(y) in. let z = adec(y, skr) in. out(c, aenc(z, pka)) 

Allow the intruder to pick who starts a session with the agent executing Pi  

Add an input to have the intruder “feed” any public key to the Pi role 

Could be pk(ska) or pk(skb), or even the intruder’s own public key pk(skc) 

Pr3  ska. skb. ( in(c, xpk). Pi(ska, xpk) | Pr(skb) | out(c, pk(ska)) | out(c, pk(skb)) )

≜ ν

≜

≜ ν ν



MORE MISSING ELEMENTS

Can have unboundedly many sessions in parallel 

Need to add replication



A FOURTH ATTEMPT

Pi(ski, pkr)  n. out(c, aenc(n, pkr)). in(c, x). if(adec(x, ski)==n) then SUCCESS 

Pr(skr)  in(c, y). let pka = fst(y) in. let z = adec(y, skr) in. out(c, aenc(z, pka)) 

Pr4  ska. skb.( !in(c, xpk). Pi(ska, xpk) | !Pr(skb) | out(c, pk(ska)) | out(c, pk(skb)) ) 

Allow unboundedly many copies of the initiator role (talking to anyone the 
intruder picks), and the responder role 

Still not enough! What’s wrong now?

≜ ν

≜

≜ ν ν



A FIFTH (FINAL?) ATTEMPT

Pi(ski, pkr)  n. out(c, aenc(n, pkr)). in(c, x). if(adec(x, ski)==n) then SUCCESS 

Pr(skr)  in(c, y). let pka = fst(y) in. let z = adec(y, skr) in. out(c, aenc(z, pka)) 

Pr5  ! ska.! skb.( !in(c, xpk). Pi(ska, xpk) | !Pr(skb) |  
                                        !in(c, xpk). Pi(skb, xpk) | !Pr(ska) | 

                                        out(c, pk(ska)) | out(c, pk(skb)) ) 

Allow the same agent to play either role; allow unboundedly many honest agents 

Can write this out more succinctly as follows: 

Pr  ! sk.( !in(c, xpk). Pi(sk, xpk) | !Pr(sk) | out(c, pk(sk)) )

≜ ν

≜

≜ ν ν

≜ ν



INTRUDER KNOWLEDGE

Intruder controls network 

Messages sent onto channel c added to intruder knowledge 

Intruder stores every message along with a variable pointing to it 

Denoted by a substitution σ = [x1 ↦ t1, …, xn ↦ tn] 

dom(σ) = {x1, …, xn} and rng(σ) = {t1, …, tn} 

Each ti a term without variables or destructors 

Messages received from c should be derivable from σ  

t is derivable from σ  iff  rng(σ) ⊢ t *



OTHER BOOKKEEPING

n.P evolves like the process P; uses a fresh name m in place of n 

Fresh names are private; cannot be accessed by the intruder 

Names outside the scope of a  are assumed to be public 

Have to keep track of all fresh names generated during a process 

Processes involve replication; track a multiset of processes

ν

ν



CONFIGURATIONS

A configuration of a process is a triple  where 

 is a finite multiset of processes 

 is a finite set of freshly generated names 

σ is a finite substitution mapping variables to messages 

An extended process is a configuration   

For simplicity, we will write this as  

Process evolution: transition (reduction) rules on configurations

𝒞 := (𝒫, ñ, σ)

𝒫

ñ

({P1, …, Pn}, ñ, σ)

νñ . (P1 ∣ … ∣ Pn ∣ σ)



REDUCTION RULES 1



REDUCTION RULES 2

P[t ↦ u] denotes P where each free t is replaced by u 

m is fresh iff m names(rng(σ))∉ ñ ∪ names(𝒫 ∪ {P}) ∪



FRAMES

Attacker knowledge captured via a frame  

A substitution with some bound names 

The frame of a configuration  is  

For , we say  if rng  

Can also be expressed in terms of recipes

φ = νñ ⋅ σ

𝒞 = (𝒫, ñ, σ) φ(𝒞) := νñ ⋅ σ

φ = νñ ⋅ σ φ ⊢ t (σ) ∪ (𝒩∖ñ) ⊢ t



RECIPES

r is a -recipe for a term t if 

vars(r)  dom(σ) 

names(r)  

t =R rσ           (where =R is the equational theory under consideration) 

Note that any name not bound in  can be used by the attacker

φ

⊆

∩ ñ = ∅

𝒞



NOW WHAT?

We now have an abstract formal model in which to formalize protocols 

Now we need to specify properties as checks over this model 

Interested in various properties 

Secrecy (“nobody but <some parties> should know t”) 

Authentication (“If A thinks she’s talking to B, B should have spoken to A”) 

Agreement (“If A and B think they share value v with each other, that is the case”) 

Privacy (“Nobody should know that agent A holds value a, even if A and a are 
themselves publicly known values)…



PROPERTIES

Two main classes of properties: trace and equivalence 

Trace: verified by examining one run of the protocol at a time 

Secrecy: There is no run of the protocol where I knows m 

Agreement: In every run of the protocol where A and B 
participate, if A thinks they share some freshly-generated 
value v with B, then B does share v with A.



SECRECY IN APPLIED-PI

m is secret in a protocol iff there is no run where the 
configuration yields a frame which can derive m 

m is bound under a  operator in our example protocol 

How do we even specify that m is intended to be secret?

ν



SECRECY: FORMALIZED

Rename bound variables to avoid name clashes 

Use a monitor process annotated with events 

A reduction sequence  satisfies an event e(t) iff there is an i such that 
e(t) appears in Pi  

Let , and leak be an event that does not occur in P 

Define Ps := (P’ | ( in(c, x). if x = s then event leak(s) else 0 ) )  

s is secret in P iff there is no reduction sequence starting from Ps which satisfies leak(s)

P0
γ1 P1⋯

γn Pn

P = νs ⋅ P′ 

νs .



MORE TRACE PROPERTIES

Correspondence properties: “If an event e happened, then an event e’ 
must have happened before”  

Examples: Authentication, agreement etc 

Authentication: “If B finished an execution of the protocol with A, 
then A must have started an execution with B earlier”  

Agreement: “If B thinks they share a value v with A, then A must 
have generated v for use with B”  

Various flavours: aliveness, weak agreement, injective agreement &c.



CORRESPONDENCE: FORMALIZED

 denotes the following correspondence: “if  
occurred in a run, then  occurred earlier” 

A reduction sequence  satisfies a correspondence 
 iff for any σ ,  

whenever  occurs in some Pi, there is a j  i such that  

 occurs in Pj 

A process P satisfies a correspondence property iff all reduction 
sequences starting from P satisfy it.

e0( ⃗t0 ) ▹ e1( ⃗t1 ) e1( ⃗t1 )
e0( ⃗t0 )

P0
γ1 P1⋯

γn Pn
e0( ⃗t0 ) ▹ e1( ⃗t1 )

e1( ⃗t1 σ) ≤

e0( ⃗t0 σ)



EQUIVALENCE PROPERTIES

Equivalence: require simultaneous examination of multiple protocol runs, often 
to ensure link between two values is secret 

Strong Secrecy: The attacker should not be able to link an input of their 
choice to the value of some observable variable. 

Voter anonymity: The attacker should not be able to link a voter’s identity to 
their vote. 

Need to identify what differences the attacker can observe between multiple 
runs 

Simplest possible observation: does variable x map to the same term in all runs?



STATIC EQUIVALENCE

Frames  &  with  &  

Can learn the same terms from both frames 

But need different recipes for the same term! 

Capture ability to compare messages via static equivalence 

Formalize what equalities the attacker can learn from a frame

φ1 φ2 σ1 = [x ↦ 0,y ↦ 1] σ2 = [x ↦ 1,y ↦ 0]



STATIC EQUIVALENCE

Consider a frame and terms t and u 

We say  iff there are  and σ  such that: 

 (after appropriate variable renaming) 

(names(t)  names(u))  

vars(t)  vars(u)  dom(σ) 

tσ =R uσ 

Two frames  and  are statically equivalent (denoted ) iff 

dom( ) = dom( ), and 

for any terms t and u,  iff 

φ ⊧ t =R u ñ

φ = νñ . σ

∪ ∩ ñ = ∅

∪ ⊆

φ1 = ν ñ1 . σ1 φ2 = νñ2 . σ2 φ1 ∼ φ2

σ1 σ2

φ1 ⊧ t =R u φ2 ⊧ t =R u



OBSERVATIONAL EQUIVALENCE

But what about a property like voter anonymity? 

“The attacker should not be able to link a voter’s identity to 
their vote”  

Left implicit: “No matter what the attacker does”! 

How do we formalize this bit?



OBSERVATIONAL EQUIVALENCE

Use contexts 

A context is a process capturing intruder behaviour with a hole, where 
we can plug in the process under examination 

Quantifying over contexts captures all possible intruder behaviours 

Two processes are observationally equivalent if 

any sequence of reduction rules results in observationally equivalent 
processes, and 

if they remain observationally equivalent under any context


