COL876: SPECIAL TOPICS IN FORMAL METHODS

Formal verification of security protocols

Lecture 4, 7 August 2023

RECAP

Saw a high-level overview of the active intruder problem

Alternative presentation for inference: equational theories

 $t := m | pk(k) | (t_1, t_2) | aenc(t, pk(k))$

 $fst((t_1, t_2)) = t_1$ $snd((t_1, t_2)) = t_2$ adec(aenc(t, pk(k)), k) = t

TODAY

- A programming-style representation of protocols
- Helps formalize some details we kept implicit so far
- Needs us to utilize equational theories in the description
- See how to write out protocols in this, the applied-pi calculus

APPLIED-PI CALCULUS: GRAMMAR

Ρ,

Q:=	plain process	
0		[null process]
P	Q	[parallel composition]
!P		[replication]
vn.	Р	[name restriction]
if t ₁	$t_1 = t_2$ then P else Q	[conditional branching]
in(c, x).P	[receive action]
out	c(c, t).P	[send action]
let	x = t in P	[let binding]

ALICE-BOB VS APPLIED-PI

Alice-Bob Notation	Applied-Pi Calculus				
Known set of agents	Generate agents dynamically				
Agents identified by name	Agents identified by key				
Only constructors for terms	Both constructors & destructors				
New terms: Inference system	New terms: recipes				
Received message is a pattern	Received message is a variable				

FORMALIZING EXECUTIONS

 $A \rightarrow B : A, enc(m, pk(B))$ $B \rightarrow A : enc(m, pk(A))$

```
init(ski: skey, pkr: pkey) {
    new n: bytes;
    send(pk(ski), aenc(n,pkr));
    recv(x: bytes);
    if (adec(x,ski) ≠ n)
    error;
}
```

```
resp(skr: skey) {
    recv(k: pkey, y: bytes);
    let
        z = adec(y, skr)
    in
        send(aenc(z,k));
}
```

FORMALIZING EXECUTIONS

```
init(ski: skey, pkr: pkey) {
    new n: bytes;
    send(pk(ski), aenc(n,pkr));
    recv(x: bytes);
    if (adec(x,ski) ≠= n)
    error;
}
```

 $P_i(ski, pkr) \triangleq$

vn. out(c, aenc(n, pkr)).
in(c, x).
if(adec(x, ski) == n) then
SUCCESS

FORMALIZING EXECUTIONS

```
resp(skr: skey) {
    recv(k: pkey, y: bytes);
    let
        z = adec(y, skr)
    in
        send(aenc(z,k));
}
```

 $P_r(skr) \triangleq$

in(c, y).
let pka = fst(y) in
let z = adec(y, skr) in
out(c, aenc(z, pka))

A FIRST ATTEMPT

- P_i(*ski*, *pkr*) $\triangleq \nu n$. out(c, aenc(*n*, *pkr*)). in(c, x). if(adec(x, *ski*) = = *n*) then SUCCESS
- P_r(*skr*) \triangleq in(c, y). let *pka* = fst(y) in. let z = adec(y, *skr*) in. out(c, aenc(z, *pka*))
- Have to put these two roles together to get an execution of the overall protocol?
- Agent with key pk(sk_a) executes an instance of P_i, while the agent with key pk(sk_b) executes an instance of P_r
- We also output the agents' public keys to make them available to the intruder

■ $\Pr^{I} \triangleq \nu sk_{a}$. νsk_{b} . ($P_{i}(sk_{a}, pk(sk_{b})) | P_{r}(sk_{b}) | out(c, pk(sk_{a})) | out(c, pk(sk_{b}))$)

INTRUDER? WHAT INTRUDER?

- Okay, so we captured the MitM attack on that protocol.
- Recall that the adversary has a wide array of abilities
 - Most of these are not formalized in Pr²!
 - We do not a priori know the attack on a given protocol
 - Formalism needs to be able to find any possible attack
- What about some attack where
 - the intruder mixes-and-matches terms, and
 - maybe requires A to talk to someone else? The intruder themselves, maybe?

A SECOND ATTEMPT

- P_i(ski, pkr) $\triangleq \nu n$. out(c, aenc(n, pkr)). in(c, x). if(adec(x, ski) = = n) then SUCCESS
- $P_r(skr) \triangleq in(c, y)$. let pka = fst(y) in. let z = adec(y, skr) in. out(c, aenc(z, pka))
- Explicitly model an instance of P_i where the agent with key sk_a talks to the intruder (who has key sk_c)
 - sk_c is just a free name; free names by default accessible to the intruder
- If the intruder starts a P_i instance, we only need to model a P_r instance by an honest agent
- $Pr^2 \triangleq \nu sk_a$. νsk_b . ($P_i(sk_a, pk(sk_b)) | P_i(sk_a, pk(sk_c)) | P_r(sk_b) |$ out(c, pk(sk_a)) | out(c, pk(sk_b)))

A THIRD ATTEMPT

- $P_i(ski, pkr) \triangleq \nu n. out(c, aenc(n, pkr)). in(c, x). if(adec(x, ski) = = n) then SUCCESS$
- $P_r(skr) \triangleq in(c, y)$. let pka = fst(y) in. let z = adec(y, skr) in. out(c, aenc(z, pka))
- Allow the intruder to pick who starts a session with the agent executing P_i
 - Add an input to have the intruder "feed" any public key to the P_i role
 - Could be $pk(sk_a)$ or $pk(sk_b)$, or even the intruder's own public key $pk(sk_c)$
- $Pr^3 \triangleq \nu sk_a$. νsk_b . (in(c, x_{pk}). $P_i(sk_a, x_{pk}) | P_r(sk_b) | out(c, pk(sk_a)) | out(c, pk(sk_b))$)

MORE MISSING ELEMENTS

- Can have unboundedly many sessions in parallel
- Need to add replication

A FOURTH ATTEMPT

- P_i(ski, pkr) $\triangleq \nu n$. out(c, aenc(n, pkr)). in(c, x). if(adec(x, ski) = = n) then SUCCESS
- $P_r(skr) \triangleq in(c, y)$. let pka = fst(y) in. let z = adec(y, skr) in. out(c, aenc(z, pka))
- $Pr^4 \triangleq \nu sk_a$. νsk_b . (!in(c, x_{pk}). $P_i(sk_a, x_{pk}) | !P_r(sk_b) | out(c, pk(sk_a)) | out(c, pk(sk_b))$)
- Allow unboundedly many copies of the initiator role (talking to anyone the intruder picks), and the responder role
- Still not enough! What's wrong now?

A FIFTH (FINAL?) ATTEMPT

- P_i(*ski*, *pkr*) $\triangleq \nu n$. out(c, aenc(*n*, *pkr*)). in(c, x). if(adec(x, *ski*) = = *n*) then SUCCESS
- $P_r(skr) \triangleq in(c, y)$. let pka = fst(y) in. let z = adec(y, skr) in. out(c, aenc(z, pka))
- $\operatorname{Pr}^{5} \triangleq ! \nu s k_{a} .! \nu s k_{b} . (! \operatorname{in}(c, \mathbf{x}_{pk}). \operatorname{Pi}(s k_{a}, \mathbf{x}_{pk}) | ! \operatorname{Pr}(s k_{b}) |$ $! \operatorname{in}(c, \mathbf{x}_{pk}). \operatorname{Pi}(s k_{b}, \mathbf{x}_{pk}) | ! \operatorname{Pr}(s k_{a}) |$ $\operatorname{out}(c, \operatorname{pk}(s k_{a})) | \operatorname{out}(c, \operatorname{pk}(s k_{b})))$
- Allow the same agent to play either role; allow unboundedly many honest agents
- Can write this out more succinctly as follows:

 $Pr \triangleq !\nu sk. (!in(c, x_{pk}). P_i(sk, x_{pk}) | !P_r(sk) | out(c, pk(sk)))$

INTRUDER KNOWLEDGE

- Intruder controls network
- Messages sent onto channel c added to intruder knowledge
- Intruder stores every message along with a variable pointing to it
 - Denoted by a substitution $\sigma = [x_1 \mapsto t_1, ..., x_n \mapsto t_n]$
 - $dom(\sigma) = \{x_1, ..., x_n\} \text{ and } rng(\sigma) = \{t_1, ..., t_n\}$
 - Each t_i a term without variables or destructors
- Messages received from c should be derivable from σ
- t is derivable from σ iff $rng(\sigma) \vdash t^*$

OTHER BOOKKEEPING

- $\nu n.P$ evolves like the process P; uses a fresh name m in place of n
- Fresh names are private; cannot be accessed by the intruder
- Names outside the scope of a ν are assumed to be public
- Have to keep track of all fresh names generated during a process
- Processes involve replication; track a multiset of processes

CONFIGURATIONS

- A configuration of a process is a triple $\mathscr{C} := (\mathscr{P}, \tilde{n}, \sigma)$ where
 - If a finite multiset of processes
 - \tilde{n} is a finite set of freshly generated names
 - σ is a finite substitution mapping variables to messages
- An extended process is a configuration $(\{P_1, ..., P_n\}, \tilde{n}, \sigma)$
 - For simplicity, we will write this as $\nu \tilde{n} \cdot (P_1 \mid ... \mid P_n \mid \sigma)$
- Process evolution: transition (reduction) rules on configurations

REDUCTION RULES 1

(𝒫 ∪ {o},	ñ,	σ)	$\xrightarrow{\tau}$	(P,	ñ,	σ)	
$(\mathscr{P} \cup \{ \mathbb{P} \mid \mathbb{Q} \},$	ñ,	σ)	$\xrightarrow{\tau}$	$(\mathcal{P} \cup \{P, Q\},$	ñ,	σ)	
$(\mathscr{P} \cup \{! P\},$	ñ,	σ)	$\xrightarrow{\tau}$	$(\mathscr{P} \cup \{! P, P\},$	ñ,	σ)	
$(\mathcal{P} \cup \{ \mathbf{if} t = u \mathbf{then} P \mathbf{else} Q \},\$	ñ,	σ)	$\xrightarrow{\tau}$	$(\mathcal{P} \cup \{P\},$	ñ,	σ)	$\mathbf{if} \boldsymbol{t} =_{\mathbf{R}} \boldsymbol{u}$
$(\mathcal{P} \cup \{ \mathbf{if} t = u \mathbf{then} P \mathbf{else} Q \},\$	ñ,	σ)	$\xrightarrow{\tau}$	(ℱ∪{Q},	ñ,	σ)	if t ≠ _R u t, u ground

REDUCTION RULES 2

$(\mathcal{P} \cup \{ \mathbf{let} \ \mathbf{x} = t \ \mathbf{in} \ \mathbf{P} \},\$	ñ,	σ)	$\xrightarrow{\tau}$	$(\mathscr{P} \cup \{\mathbb{P}[\mathbf{x} \mapsto t]\},\$	ñ,	σ)	
$(\mathcal{P} \cup \{ \forall n.P \},$	ñ,	σ)	$\xrightarrow{\tau}$	$(\mathscr{P} \cup \{\mathbb{P}[n \mapsto m]\},\$	$\widetilde{n} \cup \{m\},\$	σ)	m fresh
$(\mathcal{P} \cup \{\mathbf{out}(c,t).P\},$	ñ,	σ)	$\xrightarrow{+x}$	(ℬ∪{ℙ},	ñ,	σ')	$x \notin dom(\sigma)$ $\sigma' = \sigma \cup [x \mapsto t \downarrow]$
$(\mathscr{P} \cup \{\mathbf{in}(c, x).P\},$	ñ,	σ)	-r →	$(\mathscr{P} \cup \{\mathbb{P}[x \mapsto t]\},\$	ñ,	σ)	t constructed using the recipe r

P[$t \mapsto u$] denotes P where each free t is replaced by u

■ *m* is fresh iff $m \notin \tilde{n} \cup \text{names}(\mathcal{P} \cup \{P\}) \cup \text{names}(rng(\sigma))$

FRAMES

- Attacker knowledge captured via a frame $\varphi = \nu \tilde{n} \cdot \sigma$
 - A substitution with some bound names
- The frame of a configuration $\mathscr{C} = (\mathscr{P}, \tilde{n}, \sigma)$ is $\varphi(\mathscr{C}) := \nu \tilde{n} \cdot \sigma$
- For $\varphi = \nu \tilde{n} \cdot \sigma$, we say $\varphi \vdash t$ if $rng(\sigma) \cup (\mathcal{N} \setminus \tilde{n}) \vdash t$
- Can also be expressed in terms of recipes

RECIPES

- r is a φ -recipe for a term t if
 - $vars(r) \subseteq dom(\sigma)$
 - names(r) $\cap \tilde{n} = \emptyset$
 - $t =_R r\sigma$ (where $=_R$ is the equational theory under consideration)

Note that any name not bound in C can be used by the attacker

NOW WHAT?

- We now have an abstract formal model in which to formalize protocols
- Now we need to specify properties as checks over this model
- Interested in various properties
 - Secrecy ("nobody but < some parties > should know t")
 - Authentication ("If A thinks she's talking to B, B should have spoken to A")
 - Agreement ("If A and B think they share value v with each other, that is the case")
 - Privacy ("Nobody should know that agent A holds value a, even if A and a are themselves publicly known values)...

PROPERTIES

- Two main classes of properties: trace and equivalence
- Trace: verified by examining one run of the protocol at a time
 - Secrecy: There is no run of the protocol where I knows m
 - Agreement: In every run of the protocol where A and B participate, if A thinks they share some freshly-generated value v with B, then B does share v with A.

SECRECY IN APPLIED-PI

- m is secret in a protocol iff there is no run where the configuration yields a frame which can derive m
- m is bound under a ν operator in our example protocol
- How do we even specify that m is intended to be secret?

SECRECY: FORMALIZED

- Rename bound variables to avoid name clashes
- Use a monitor process annotated with events
- A reduction sequence $P_0 \xrightarrow{\gamma_1} P_1 \cdots \xrightarrow{\gamma_n} P_n$ satisfies an event e(t) iff there is an i such that e(t) appears in P_i
- Let $P = \nu s \cdot P'$, and leak be an event that does not occur in P
- Define $P^s := \nu s \cdot (P' \mid (in(c, x)) \cdot if x = s \text{ then event leak}(s) \text{ else } \circ))$
- s is secret in P iff there is no reduction sequence starting from P^s which satisfies leak(s)

MORE TRACE PROPERTIES

- Correspondence properties: "If an event e happened, then an event e' must have happened before"
- Examples: Authentication, agreement etc
 - Authentication: "If B finished an execution of the protocol with A, then A must have started an execution with B earlier"
 - Agreement: "If B thinks they share a value v with A, then A must have generated v for use with B"
 - Various flavours: aliveness, weak agreement, injective agreement &c.

CORRESPONDENCE: FORMALIZED

- $e_0(\vec{t_0}) \triangleright e_1(\vec{t_1})$ denotes the following correspondence: "if $e_1(\vec{t_1})$ occurred in a run, then $e_0(\vec{t_0})$ occurred earlier"
- A reduction sequence $P_0 \xrightarrow{\gamma_1} P_1 \cdots \xrightarrow{\gamma_n} P_n$ satisfies a correspondence $e_0(\vec{t_0}) \triangleright e_1(\vec{t_1})$ iff for any σ ,

whenever $e_1(\vec{t_1}\sigma)$ occurs in some P_i , there is a $j \le i$ such that $e_0(\vec{t_0}\sigma)$ occurs in P_j

A process P satisfies a correspondence property iff all reduction sequences starting from P satisfy it.

EQUIVALENCE PROPERTIES

- Equivalence: require simultaneous examination of multiple protocol runs, often to ensure link between two values is secret
 - Strong Secrecy: The attacker should not be able to link an input of their choice to the value of some observable variable.
 - Voter anonymity: The attacker should not be able to link a voter's identity to their vote.
- Need to identify what differences the attacker can observe between multiple runs
- Simplest possible observation: does variable x map to the same term in all runs?

STATIC EQUIVALENCE

- Frames $\varphi_1 \& \varphi_2$ with $\sigma_1 = [x \mapsto 0, y \mapsto 1] \& \sigma_2 = [x \mapsto 1, y \mapsto 0]$
- Can learn the same terms from both frames
 - But need different recipes for the same term!
- Capture ability to compare messages via static equivalence
- Formalize what equalities the attacker can learn from a frame

STATIC EQUIVALENCE

- Consider a frame and terms t and u
- We say $\varphi \models t =_R u$ iff there are \tilde{n} and σ such that:
 - $\varphi = \nu \tilde{n} \cdot \sigma$ (after appropriate variable renaming)
 - $(names(t) \cup names(u)) \cap \tilde{n} = \emptyset$
 - $vars(t) \cup vars(u) \subseteq dom(\sigma)$
 - $t\sigma =_{R} u\sigma$

• Two frames $\varphi_1 = \nu \widetilde{n_1} \cdot \sigma_1$ and $\varphi_2 = \nu \widetilde{n_2} \cdot \sigma_2$ are statically equivalent (denoted $\varphi_1 \sim \varphi_2$) iff

- dom (σ_1) = dom (σ_2) , and
- for any terms t and $u, \varphi_1 \models t =_R u$ iff $\varphi_2 \models t =_R u$

OBSERVATIONAL EQUIVALENCE

- But what about a property like voter anonymity?
- "The attacker should not be able to link a voter's identity to their vote"
 - Left implicit: "No matter what the attacker does"!
- How do we formalize this bit?

OBSERVATIONAL EQUIVALENCE

Use contexts

- A context is a process capturing intruder behaviour with a hole, where we can plug in the process under examination
- Quantifying over contexts captures all possible intruder behaviours
- Two processes are observationally equivalent if
 - any sequence of reduction rules results in observationally equivalent processes, and
- if they remain observationally equivalent under any context