
Formal verification of security protocols

Lecture 3, 3 August 2023

COL876: SPECIAL TOPICS IN FORMAL METHODS

QUIZ!

I. Write out the proof rules for symmetric encryption and
hashing. Point out which ones are the constructors and which
the destructors.

II.What is the size of the following term? Also write out its
subterms.

BONUS: Find a derivation of m from the following X.

RECAP: PASSIVE INTRUDER PROBLEM

Given an X and a t, check if X t using our proof system.

Easy to do for the system with pairing and encryption: PTIME!

Basically models a “benign intruder”: just snoops on the channel
but nothing more

Unlikely to catch “real” bugs in the protocol due to intruder
orchestrations

⊢

DOLEV-YAO INTRUDER

Intruder I cannot break encryption, but, on the public channel, can

see any message sent on the channel

block any message from reaching the intended recipient

re-route any message to any principal

masquerade as any principal and send messages in their name

initiate new communication according to the protocol

generate messages — according to some rules

DOLEV-YAO INTRUDER

Intruder I cannot break encryption, but, on the public channel, can

see any message sent on the channel

block any message from reaching the intended recipient

re-route any message to any principal

masquerade as any principal and send messages in their name

initiate new communication according to the protocol

generate messages — according to some rules

Passive intruder problem

DOLEV-YAO INTRUDER

Intruder I cannot break encryption, but, on the public channel, can

see any message sent on the channel

block any message from reaching the intended recipient

re-route any message to any principal

masquerade as any principal and send messages in their name

initiate new communication according to the protocol

generate messages — according to some rules

Active
intruder
problem}

ACTIVE INTRUDER PROBLEM

Given a protocol P and a term t, check if there
is an execution of P, at the end of which, the

intruder can derive t.

ACTIVE INTRUDER PROBLEM

No explicit X; execute P and generate X, then check derivability.

Have to check all possible executions, with a passive intruder
problem module

What does it even mean to execute a protocol? What does an
execution look like?

EXECUTING A PROTOCOL

Multiple sessions running in parallel.

What all do agents need to keep track of in each session?

Which session they are currently involved in

Intended agents involved in any action by them

New terms generated as part of a send

Terms received “instead of what was sent” in a receive…

REMEMBER THIS?

On a public network, two people share a randomly generated
value m, which they want kept secret.

Proving secrecy of m needs us to solve the active intruder
problem

FORMALIZING EXECUTIONS

Two “roles”, init and resp (described formally on next slide)

Each parametrized by terms that are neither generated afresh,
nor received. Which ones?

FORMALIZING EXECUTIONS

init(ski: skey, pkr: pkey) {

new n: bytes;

send(pk(ski), aenc(n,pkr));

recv(x: bytes);

if (adec(x,ski) !!=/= n)

error;

}

resp(skr: skey) {

recv(k: pkey, y: bytes);

let

z = adec(y, skr)

in

send(aenc(z,k));

}

MORE ABOUT EXECUTIONS

Some instance of each role executed by agents on the network

Instances give meaning to parameters and variables

Parameters: Generated by agents for sending (agent names, random etc)

Variables: Only for received terms; given meaning by intruder!

Man-in-the-middle attack involves init(A, B) and resp(B)

An execution is an interleaving of finitely many instances of roles

MORE ABOUT EXECUTIONS

Are all interleavings valid executions? No!

MORE ABOUT EXECUTIONS

Are all interleavings valid executions? No!

Honest agents should be able to construct a message to send it

More importantly: intruder should be able to construct a
message corresponding to a variable

Constructing a message: deriving it using the proof system
from their “current knowledge”

MORE ABOUT EXECUTIONS

Needs us to check derivability at each step, but also update knowledge

Initial knowledge state: constants, names/pubkeys of other agents, own secret key

For every send by A

Check derivability from A’s current local knowledge

Add sent message to I’s knowledge state

For every receive by A

Check derivability from I’s current knowledge

Add received message to A’s state

MORE ABOUT EXECUTIONS

Each agent (and I) has a local knowledge state

Global state: collection of these local states

Enabled actions induce a transition with global state update

A run of this transition system = an execution of the protocol

ACTIVE INTRUDER PROBLEM

Passive intruder problem module is decidable

Still need to check all possible executions though!

Well-formedness lets us assign “sensible” values to parameters

Unboundedly many possible values for variables though

Unboundedly many such instances running in parallel

Obviously undecidable

ACTIVE INTRUDER PROBLEM

Can make it decidable by bounding one or more of these

Bounding the number of instances is enough!

What about parameters and variables?

Very nifty technique by Rusinowitch and Turuani

Active intruder problem with boundedly many sessions in NP [RT03]

KEY IDEAS [RT03]

Parameters

Generated fresh (small: constants, names, random values), or

Depend on values received (variables!) earlier in the run

Can still assign arbitrarily large values to variables

Crucial: Assignment done by I, to somehow violate property

Won’t use a huge term if a small one will give same outcome

Enough for intruder to use “relatively” small terms for variables

SEGUE: MORE INFERENCE

Recall: inference for new messages done via a proof system

Can have an alternative presentation

An equational theory for all the functions in the term algebra

Capture behaviour via equations, instead of proof rules

INFERENCE FOR MESSAGES

NEXT TIME

Represent protocols as programs

Use equational theory towards ensuring well-formedness

One possible model for automated verification

Different kinds of properties that can be verified

