
Formal verification of security protocols

Lecture 2, 27 July 2023

COL876: SPECIAL TOPICS IN FORMAL METHODS



MORE LOGISTICS

Register (potentially via a General Request) if you have not 
already


Join the Teams channel for the course and check it regularly


All announcements (including those for assignments and 
deadlines) will be made only on the Teams channel


Lecture notes will be uploaded to the channel



SYMBOLIC MODEL: DOLEV & YAO, 1983

Split each communication into a send and a receive


I is essentially the network


Each send captured by I 


Each receive assumed to come from I


A send action need not have a corresponding receive action!



DOLEV-YAO INTRUDER

Intruder I cannot break encryption, but, on the public channel, can


see any message sent on the channel


block any message from reaching the intended recipient


re-route any message to any principal


masquerade as any principal and send messages in their name 


initiate new communication according to the protocol


generate messages — according to some rules



MODELLING MESSAGES

Split each communication into a send and a (potential) receive 


But what about the messages sent and received?


Messages are not bitstrings 


Ignore extraneous details like headers, metadata etc. 


Modelled as symbolic terms from a term algebra. 



MORE ABOUT MESSAGES

When can an agent/intruder send a particular message term?


When they can generate it, according to particular rules.


Will only consider “well-formed” protocols


Honest principals can always generate whatever messages 
they need to send according to the protocol


Need to check correct generation only for the intruder



PROOF RULES FOR MESSAGES

Proof system for a term algebra 

with pairing and asymmetric encryption



VERIFYING PROPERTIES

Many properties involve looking for a proof using these rules


Passive intruder problem: can the intruder violate some desired 
property just by observing traffic on the network?


Active intruder problem: can the intruder violate some desired 
property by orchestrating DY-allowable behaviours and then 
observing the resulting network traffic?



LOOKING FOR PROOFS

Is this always easy? Is it even always doable?


Passive intruder problem: Fixed X, fixed t, try to find a proof


Active intruder problem: Come up with an X and a suitable 
mapping for variables (what variables? we’ll see later!) in X and 
t such that there is a proof of t from X 



PASSIVE INTRUDER PROBLEM

Given an X and a t, check if X derives t



RECALL: PROOF SYSTEM



EXAMPLE 1

Is there a proof of X  m?⊢



EXAMPLE 2

Is there a proof of X  m?⊢



EXAMPLE 3

Is there a proof of X  aenc( m,  pk(k3) )?⊢



PROOF SEARCH

At first glance, not easy at all! Have to search “upwards” from 
the intended conclusion.


Which rules do we apply?


In what sequence?


Which terms do we apply them to? etc. &c. 


Want an efficient algorithm which, given X and t, can check if X 
derives t. 



MORE ABOUT PROOF SEARCH

No rule in our system changes the X on the LHS


Constructor rules lead to “bigger” terms on the right


Destructor rules lead to “smaller” terms on the right


Can create arbitrarily large terms while searching for a proof of 
a tiny one



MINOR DETOUR: SIZES OF TERMS

How do we measure the size of a term?


Treat it like a tree, count the number of nodes


Each subtree is called a “subterm”


Define it inductively




ALL PROOFS ARE EQUAL…

But some are more equal than others


Want the shortest proof, with no “unnecessary detours”


Should not build up a new term only to break it down


Can we always get such a proof?



NORMAL PROOFS

A “normal” proof is one where no such detours happen


A constructor rule is never “followed by” a destructor rule


End result: 


Can always first break down terms from the set on the LHS, before 
we start building new ones


Proof has structure and enjoys some interesting properties


Gives us a good handle on how to go about searching for proofs!



MORE ABOUT NORMAL PROOFS

Normalization theorem: Can convert any proof into a normal one


A normal proof also enjoys the subterm property, stated as follows


For any normal proof π of X ⊢ t, every term occurring in π on the 
RHS is a subterm of X  {t}. In particular, if π ends in a destructor 

rule, every such term is a subterm of X alone. 
∪



PTIME ALGORITHM FOR CHECKING 
DERIVABILITY

Given an X and a t, check if X derives t.


Denote by st the (finite) set of all subterms of X  {t}. Let N = |st|.


Start with A :=  and B := X. As long as A  B, set 

A := B, and 


B := {u | u  st is derivable from A using one application of any proof rule} 


Each iteration of the loop needs N2  many steps: examine all pairs of terms in A 
and see if one can derive a new term in st using them


At most N iterations in all: the loop stops if one cannot add any new terms to B
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