COL876: SPECIAL TOPICS IN FORMAL METHODS

Formal verification of security protocols

Lecture 11, 19 October 2023

RECAP: COMPUTATIONAL SOUNDNESS

- Want to map symbolic terms to distributions over strings
- Map symbolic attacks to non-negligible adversary advantage
- Need to keep track of adversary "view"
- "What can an adversary learn from an encrypted term?"
 "Patterns"
- Equivalence of patterns == Indistinguishability of ciphertexts

PATTERNS FROM TERMS

- P, Q := i | k | (P, Q) | {P}_k | \Box where i \in {0, 1} and k \in Keys
- Given a set of keys T and a term M, pat(M, T) gives the pattern that an attacker can see in M if he has access to T
 - Inductive definition; two cases for encryption

■ $pat(M) = pat(M, \{k \in Keys \mid M \vdash k\}); M \equiv N \text{ iff } pat(M) = pat(N)$

• $M \cong N$ iff $M \equiv N\sigma$ for some bijection σ on Keys

PATTERNS FROM TERMS: EXAMPLES

- $o \cong o$ and $o \not\cong I$ and $\{o\}_k \cong \{I\}_k$ and $\{o\}_k \cong \{I\}_{k'}$
- $(k, \{0\}_k) \not\cong (k, \{1\}_k), \text{ but } (k, \{(\{0\}_{k'}, 0)\}_k) \cong (k, \{(\{1\}_{k'}, 0)\}_k).$
- $({0}_k, {0}_k) \cong ({0}_k, {1}_k)$ Cannot identify identical plaintexts
- $({0}_k, {1}_k) \cong ({0}_k, {1}_k)$ Cannot identify whether same key is used
- {((1, 0), (0, 1))}_k \cong {0}_k Length of plaintext is not revealed

INITIAL ASSOCIATIONS

- Given an encryption scheme Π = (K, E, D), associate to a term M a distribution on strings M(Π, η); lift to collection M(Π)
- Define an algorithm Conv which works over terms as follows:
 - Map each key k occurring in M to a string of bits $\tau(k)$ using $K(\eta)$
 - Map constants 0 and 1 in the term algebra to their bitstrings
 - Lift easily to pairs; for M = senc(M', k), map it to $E(M'(\Pi, \eta), \tau(k))$
 - Tag every bitstring with its type: "key", "bool", "pair", "ciphertext"

RECAP: ENCRYPTION SCHEMES

- An encryption scheme Π , is a triple of PTIME algorithms (K, E, D) parametrized by η
 - K is the key generation algorithm
 - input: parameter, coins
 output: key
 - E is the encryption algorithm
 - input: key, string, coins
 - output: ciphertext
 - D is the decryption algorithm
 - input: key, string
 - output: plaintext
 - D(k, E(k, m, r)) = m if m is a valid plaintext, 0 otherwise

RECAP: NEGLIGIBLE ADVANTAGE

- Probabilistic PTIME adversary A
- A function f: N → R is negligible if, for all c > 0, there exists an N_c such that $f(\eta) \le \eta^{-c}$ for all $\eta \ge N_c$.
- $adv(\eta) := Pr[x \leftarrow D | A(\eta, x) = I] Pr[x \leftarrow D' | A(\eta, x) = I]$
- We say D and D' are indistinguishable (D \approx D') if for every probabilistic PTIME adversary A, $adv(\eta)$ is negligible

EQUIVALENCE IMPLIES INDISTINGUISHABILITY

- $M \cong N$ implies $M(\Pi) \approx N(\Pi)$
- $0 \cong 0$, so $0(\Pi) \approx 0(\Pi)$. Both ensembles put all the probability mass on <0, "bool">
- $\{o\}_k \cong \{I\}_k$, so $\{o\}_k(\Pi) \approx \{I\}_k(\Pi)$
 - Non-trivial; depends heavily on our assumptions about type-o security of the encryption scheme

EQUIVALENCE IMPLIES INDISTINGUISHABILITY

- Let M and N be terms^{*} and Π an encryption scheme^{*}. If $M \cong N$, then $M(\Pi) \approx N(\Pi)$.
- Overall steps:
 - Assume M and N are pattern equivalent.
 - Rename keys
 - "Hybrid patterns" M_i and N_i to form a chain between the renamed versions of M and N to maintain pattern equivalence
 - Define ensembles for each M_i and N_i , final ensembles $M'(\Pi)$ and $N'(\Pi)$
 - Want to show that any adversary advantage between $M'(\Pi)$ and $N'(\Pi)$ is negligible
 - Assume not; Contradict the type-o security of Π

KEY RENAMING

- Want to modify M and N so that keys encrypt other keys in a systematic manner
- Rename so that:
 - M and N have I recoverable keys $j_1, j_2, ..., j_1$
 - M and N have some hidden keys
 - M has m hidden keys k₁, k₂, ..., k_m
 - N has n hidden keys k₁, k₂, ..., k_n
 - k_p encrypts k_q only when $p \ge q$
- Can do this because terms do not have key cycles; a "deeper" key gets a smaller index
- Get terms M' and N' after this renaming

HYBRID PATTERNS

- $M_{\circ}, M_{I}, \dots, M_{m}$ and $N_{\circ}, N_{I}, \dots, N_{n}$ to form chain from M' to N'
 - $M_i = pat(M', recoverable(M') \cup \{k_1, k_2, \dots, k_i\})$
 - $\mathbb{N}_{j} = pat(N', recoverable(N') \cup \{k_{1}, k_{2}, \dots, k_{j}\})$
 - $M_{\circ} = pat(M')$ and $M_m = M'$ and $N_{\circ} = pat(N')$ and $N_n = N'$
- M_i and N_i are the patterns the adversary could see in M' and N' if they had access to (hitherto hidden) keys k_i through k_i
- Acyclicity: these keys do not give access to other keys k_j where j>i

DEFINING ENSEMBLES

- We map each M_0 , M_1 , ..., M_m and N_0 , N_1 , ..., N_n to an ensemble
- Lift the Conv algorithm to work over patterns, not just terms
 - Generate a new fixed key $\tau(k_0)$ using $K(\eta)$
 - Map \Box to E(\emptyset , $\tau(k_0)$), tag with "ciphertext"
 - $\tau(k_0)$ is only for use with \Box

ADVERSARY ADVANTAGE

- We know that M(Π) ≈ M'(Π) and N(Π) ≈ N'(Π) (only keys have been renamed). Want to show that M'(Π) ≈ N'(Π)
- Assume there is an adversary A who can distinguish between M'(Π) and N'(Π) with non-negligible advantage

 $\lambda(\eta) = \Pr[y \leftarrow M'(\Pi) \mid A(\eta, y) = I] - \Pr[y \leftarrow N'(\Pi) \mid A(\eta, y) = I]$

For some constant c and infinite set S, $\lambda(\eta) > \eta^{-c}$ for all $\eta \in S$.

ADVERSARY ADVANTAGE

- We define the following for $0 \le i \le m$ and $1 \le j \le n$:
 - $p_i(\eta) = \Pr[y \leftarrow M_i(\Pi, \eta) | A(\eta, y) = I]$
 - $q_j(\eta) = \Pr[y \leftarrow N_j(\Pi, \eta) \mid A(\eta, y) = I]$
- Since $M' = M_m$ and $N' = N_n$, $\lambda = p_m q_n$. Also $p_0 = q_0$. So, $\lambda = (p_m - p_{m-1}) + (p_{m-1} - p_{m-2}) + \dots + (p_1 - p_0) + (q_0 - q_1) + (q_1 - q_2) + \dots + (q_{n-1} - q_n)$
- Have m + n quantities that add up to λ . Triangle inequality: There is either

 A suitable i or j exists for each such η, and since we have finite, fixed summands, there is some i or j that works for infinitely many η.

ADVERSARY ADVANTAGE

- Let i be such an index. There exists an infinite set S' ⊆ S s.t. $p_i(\eta) - p_{i-I}(\eta) \ge \lambda(\eta)/(m + n)$ for each $\eta \in S'$.
- A suitable i or j exists for each such η, and since we have finite, fixed summands, there is some i or j that works for infinitely many η.
- Using this adversary A, we want to construct a computational adversary A₀ who violates the type-0 security of Π.

ADVERSARY A_o

- A_o generates $\tau(k)$ using $K(\eta)$ for every k in M'
- It then runs an algorithm called Conv2 on M' (coming up) and obtains a result y
- It then calls A using the parameter η and y, and returns the result.
- A_o (and Conv2) has access to two oracles f and g, instantiated either as

■ $f = \mathcal{E}_{K_i}(.)$ for $K_i \leftarrow K(\eta)$; $g = \mathcal{E}_{K_o}(.)$ for $K_o \leftarrow K(\eta)$, or

• $f = \mathcal{E}_{K_0}(.)$ for $K_0 \leftarrow K(\eta)$; $g = \mathcal{E}_{K_0}(.)$ for $K_0 \leftarrow K(\eta)$

ALGORITHM CONV2

- Conv2 same as Conv except for encryptions; everything tagged as earlier
- For encryptions of the form {M*}k
 - If $k \in \{j_1, ..., j_l, k_1, ..., k_{i-1}\}$, map to $E(Conv_2(M^*), k)$
 - If k = k_i, map to f(Conv2(M*))
 - If k in $\{k_{i+1}, ..., k_m\}$, map to g(0)
- Encryption under a recoverable key k corresponds to encryption under the associated key $\tau(k)$.
- Encryption under a hidden key from {k₁, ..., k_{i-1}} also corresponds to encryption under the associated key \(\tau(k)\).
- Encryption under a hidden key in {k_{i+1}, ..., k_m} results in 0 encrypted under K₀.

CONTRADICTING TYPE-0 SECURITY

- We have
 - $p_i(\eta) = \Pr[K_i, K_o \leftarrow K(\eta) | A_o^{\mathcal{E}_{K_i}(.), \mathcal{E}_{K_o}(.)}(\eta) = I]$
 - $p_{i-1}(\eta) = \Pr[K_{\circ} \leftarrow K(\eta) \mid A_{\circ}^{\mathscr{E}_{K_{\circ}}(.), \mathscr{E}_{K_{\circ}}(.)}(\eta) = I]$
- Conv2(M') returns a sample from
 - $M_i(\Pi)$ when $f = \mathcal{E}_{K_i}(.)$ and $g = \mathcal{E}_{K_o}(.)$, and
 - $M_{i-I}(\Pi)$ when $f = \mathcal{E}_{K_0}(0)$ and $g = \mathcal{E}_{K_0}(0)$
- For p_i, encryption under the hidden key k_i corresponds to encryption under K_i
- For p_{i-1}, encryption under k_i results in 0 encrypted under K₀.

CONTRADICTING TYPE-0 SECURITY

• Therefore, for infinitely many values of η , we get

adv(η) for A_o is p_i(η) - p_{i-I}(η) $\geq \lambda(\eta)/(m + n)$ $> \eta^{-c}/(m+n)$ $> \eta^{-(c+I)}$