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COL876: SPECIAL TOPICS IN FORMAL METHODS



RECAP: COMPUTATIONAL SOUNDNESS

Want to map symbolic terms to distributions over strings 

Map symbolic attacks to non-negligible adversary advantage 

Need to keep track of adversary “view” 

“What can an adversary learn from an encrypted term?” 
“Patterns” 

Equivalence of patterns == Indistinguishability of ciphertexts



PATTERNS FROM TERMS

P, Q := i | k | (P, Q ) | {P}k |     where i  {0, 1} and k  Keys 

Given a set of keys T and a term M, pat(M, T) gives the pattern 
that an attacker can see in M if he has access to T 

Inductive definition; two cases for encryption 

pat(M) = pat(M, { k  Keys | M  k }); M  N iff pat(M) = pat(N)       

M  N iff M  N  for some bijection  on Keys
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PATTERNS FROM TERMS: EXAMPLES

0  0 and 0  1 and {0}k  {1}k and {o}k  {1}k’  

(k, {0}k)  (k, {1}k), but (k, { ({0}k’, 0) }k)  (k, { ({1}k’, 0) }k).  

({0}k , {0}k)  ({0}k , {1}k) Cannot identify identical plaintexts 

({0}k , {1}k)  ({0}k , {1}k’) Cannot identify whether same key is used 

{( (1, 0), (0, 1) )}k   {0}k    Length of plaintext is not revealed
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INITIAL ASSOCIATIONS

Given an encryption scheme Π = (K, E, D), associate to a term M a 
distribution on strings M(Π, ); lift to collection M(Π) 

Define an algorithm Conv which works over terms as follows: 

Map each key k occurring in M to a string of bits (k) using K( ) 

Map constants 0 and 1 in the term algebra to their bitstrings 

Lift easily to pairs; for M = senc(M’, k), map it to E(M’(Π, ), (k))  

Tag every bitstring with its type: “key”, “bool”, “pair”, “ciphertext”
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RECAP: ENCRYPTION SCHEMES

An encryption scheme Π, is a triple of PTIME algorithms (K, E, D) parametrized by  

K is the key generation algorithm  

input: parameter, coins                  output: key 

E is the encryption algorithm 

input: key, string, coins                 output: ciphertext 

D is the decryption algorithm 

input: key, string                              output: plaintext 

D(k, E(k, m, r)) = m if m is a valid plaintext, 0 otherwise

η



RECAP: NEGLIGIBLE ADVANTAGE

Probabilistic PTIME adversary A 

A function f: N  R is negligible if, for all c > 0, there exists an 
Nc such that  f( )  -c for all   Nc . 

adv( ) := Pr[ x  D | A( , x) = 1 ] - Pr[ x  D’ | A( , x) = 1 ] 

We say D and D’ are indistinguishable (D  D’) if for every 
probabilistic PTIME adversary A, adv( ) is negligible
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EQUIVALENCE IMPLIES 
INDISTINGUISHABILITY

M  N implies M(Π)  N(Π) 

0  0, so 0(Π)  0(Π). Both ensembles put all the probability 
mass on <0, “bool”> 

{0}k  {1}k, so {0}k(Π)  {1}k(Π) 

Non-trivial; depends heavily on our assumptions about 
type-0 security of the encryption scheme
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EQUIVALENCE IMPLIES 
INDISTINGUISHABILITY

Let M and N be terms* and Π an encryption scheme*. If M  N, then M(Π)  N(Π). 

Overall steps: 

Assume M and N are pattern equivalent. 

Rename keys 

“Hybrid patterns” Mi and Ni to form a chain between the renamed versions of M 
and N to maintain pattern equivalence 

Define ensembles for each Mi and Ni, final ensembles M’(Π) and N’(Π) 

Want to show that any adversary advantage between M’(Π) and N’(Π) is negligible 

Assume not; Contradict the type-0 security of Π
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KEY RENAMING

Want to modify M and N so that keys encrypt other keys in a systematic manner 

Rename so that: 

M and N have l recoverable keys j1, j2, … , jl 

M and N have some hidden keys  

M has m hidden keys k1, k2, … , km 

N has n hidden keys k1, k2, … , kn 

kp encrypts kq only when p  q 

Can do this because terms do not have key cycles; a “deeper” key gets a smaller index 

Get terms M’ and N’ after this renaming

≥



HYBRID PATTERNS

M0, M1, … , Mm and N0, N1, …, Nn to form chain from M’ to N’ 

Mi = pat(M’, recoverable(M’)  {k1, k2, … , ki}) 

Nj = pat(N’, recoverable(N’)  {k1, k2, … , kj}) 
M0 = pat(M’) and Mm = M’ and N0 = pat(N’) and Nn = N’ 

Mi and Ni are the patterns the adversary could see in M’ and N’ if 
they had access to (hitherto hidden) keys k1 through ki 

Acyclicity: these keys do not give access to other keys kj where j>i
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DEFINING ENSEMBLES

We map each M0, M1, … , Mm and N0, N1, …, Nn to an ensemble 

Lift the Conv algorithm to work over patterns, not just terms 

Generate a new fixed key (k0) using K( )  

Map  to E(0, (k0)), tag with “ciphertext” 

(k0) is only for use with 
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ADVERSARY ADVANTAGE

We know that M(Π)  M’(Π) and N(Π)  N’(Π) (only keys have 
been renamed). Want to show that M’(Π)  N’(Π) 

Assume there is an adversary A who can distinguish between 
M’(Π) and N’(Π) with non-negligible advantage 

( ) = Pr[ y  M’(Π) | A( , y) = 1 ] - Pr[ y  N’(Π) | A( , y) = 1 ] 

For some constant c and infinite set S, ( ) > -c for all   S.
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ADVERSARY ADVANTAGE

We define the following for 0  i  m and 1  j  n: 

pi( ) = Pr[ y  Mi(Π, ) | A( , y) = 1 ] 

qj( ) = Pr[ y  Nj(Π, ) | A( , y) = 1 ] 

Since M’ = Mm and N’ = Nn,  = pm - qn. Also p0 = q0. So,  

 = (pm - pm-1) + (pm-1 - pm-2) + … + (p1 - p0) + (q0 - q1) + (q1 - q2) + … + (qn-1 - qn) 

Have m+n quantities that add up to . Triangle inequality: There is either 

1  i  m s.t. pi - pi-1 /(m + n), or 

1  j  n s.t. qj - qj-1 /(m + n) 

A suitable i or j exists for each such , and since we have finite, fixed summands, there is some i or 
j that works for infinitely many . 
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ADVERSARY ADVANTAGE

Let i be such an index. There exists an infinite set S’  S s.t. 
pi( ) - pi-1( ) ( )/(m + n) for each   S’. 

A suitable i or j exists for each such , and since we have finite, 
fixed summands, there is some i or j that works for infinitely 
many . 

Using this adversary A, we want to construct a computational 
adversary A0 who violates the type-0 security of Π.
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ADVERSARY A0

A0 generates (k) using K( ) for every k in M’ 

It then runs an algorithm called Conv2 on M’ (coming up) and obtains a result 
y 

It then calls A using the parameter  and y, and returns the result. 

A0 (and Conv2) has access to two oracles f and g, instantiated either as 

f = EKi(.) for Ki  K( ); g = EK0(.) for K0  K( ), or 

f = EK0(.) for K0  K( ); g = EK0(.) for K0  K( ) 
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ALGORITHM CONV2

Conv2 same as Conv except for encryptions; everything tagged as earlier 

For encryptions of the form {M*}k  

If k  {j1, …, jl, k1, …, ki-1}, map to E(Conv2(M*), k)  

If k = ki, map to f(Conv2(M*)) 

If k in {ki+1, …, km}, map to g(0) 

Encryption under a recoverable key k corresponds to encryption under the associated key (k).  

Encryption under a hidden key from {k1, …, ki-1} also corresponds to encryption under the 
associated key (k). 

Encryption under a hidden key in {ki+1, …, km} results in 0 encrypted under K0. 
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CONTRADICTING TYPE-0 SECURITY

We have 

pi( ) = Pr[ Ki, K0  K( ) | A0
EKi(.), EK0(.)( ) = 1 ] 

pi-1( ) = Pr[ K0  K( ) | A0
EK0(.), EK0(.)( ) = 1 ] 

Conv2(M’) returns a sample from 

Mi( ) when f = EKi(.) and g = EK0(.), and 

Mi-1( ) when f = EK0(0) and g = EK0(0)  

For pi, encryption under the hidden key ki corresponds to encryption under Ki  

For pi-1, encryption under ki results in 0 encrypted under K0. 

η ← η η

η ← η η

Π

Π



CONTRADICTING TYPE-0 SECURITY

Therefore, for infinitely many values of , we get 

adv( ) for A0 is pi( ) - pi-1( ) 

( )/(m + n)  

> -c/(m+n)  

> -(c+1)
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