
Formal verification of security protocols

Lecture 11, 19 October 2023

COL876: SPECIAL TOPICS IN FORMAL METHODS

RECAP: COMPUTATIONAL SOUNDNESS

Want to map symbolic terms to distributions over strings

Map symbolic attacks to non-negligible adversary advantage

Need to keep track of adversary “view”

“What can an adversary learn from an encrypted term?”
“Patterns”

Equivalence of patterns == Indistinguishability of ciphertexts

PATTERNS FROM TERMS

P, Q := i | k | (P, Q) | {P}k | where i {0, 1} and k Keys

Given a set of keys T and a term M, pat(M, T) gives the pattern
that an attacker can see in M if he has access to T

Inductive definition; two cases for encryption

pat(M) = pat(M, { k Keys | M k }); M N iff pat(M) = pat(N)

M N iff M N for some bijection on Keys

□ ∈ ∈

∈ ⊢ ≡

≅ ≡ σ σ

PATTERNS FROM TERMS: EXAMPLES

0 0 and 0 1 and {0}k {1}k and {o}k {1}k’

(k, {0}k) (k, {1}k), but (k, { ({0}k’, 0) }k) (k, { ({1}k’, 0) }k).

({0}k , {0}k) ({0}k , {1}k) Cannot identify identical plaintexts

({0}k , {1}k) ({0}k , {1}k’) Cannot identify whether same key is used

{((1, 0), (0, 1))}k {0}k Length of plaintext is not revealed

≅ ≇ ≅ ≅

≇ ≅

≅

≅

≅

INITIAL ASSOCIATIONS

Given an encryption scheme Π = (K, E, D), associate to a term M a
distribution on strings M(Π,); lift to collection M(Π)

Define an algorithm Conv which works over terms as follows:

Map each key k occurring in M to a string of bits (k) using K()

Map constants 0 and 1 in the term algebra to their bitstrings

Lift easily to pairs; for M = senc(M’, k), map it to E(M’(Π,), (k))

Tag every bitstring with its type: “key”, “bool”, “pair”, “ciphertext”

η

τ η

η τ

RECAP: ENCRYPTION SCHEMES

An encryption scheme Π, is a triple of PTIME algorithms (K, E, D) parametrized by

K is the key generation algorithm

input: parameter, coins output: key

E is the encryption algorithm

input: key, string, coins output: ciphertext

D is the decryption algorithm

input: key, string output: plaintext

D(k, E(k, m, r)) = m if m is a valid plaintext, 0 otherwise

η

RECAP: NEGLIGIBLE ADVANTAGE

Probabilistic PTIME adversary A

A function f: N R is negligible if, for all c > 0, there exists an
Nc such that f() -c for all Nc .

adv() := Pr[x D | A(, x) = 1] - Pr[x D’ | A(, x) = 1]

We say D and D’ are indistinguishable (D D’) if for every
probabilistic PTIME adversary A, adv() is negligible

→
η ≤ η η ≥

η ← η ← η

≈
η

EQUIVALENCE IMPLIES
INDISTINGUISHABILITY

M N implies M(Π) N(Π)

0 0, so 0(Π) 0(Π). Both ensembles put all the probability
mass on <0, “bool”>

{0}k {1}k, so {0}k(Π) {1}k(Π)

Non-trivial; depends heavily on our assumptions about
type-0 security of the encryption scheme

≅ ≈

≅ ≈

≅ ≈

EQUIVALENCE IMPLIES
INDISTINGUISHABILITY

Let M and N be terms* and Π an encryption scheme*. If M N, then M(Π) N(Π).

Overall steps:

Assume M and N are pattern equivalent.

Rename keys

“Hybrid patterns” Mi and Ni to form a chain between the renamed versions of M
and N to maintain pattern equivalence

Define ensembles for each Mi and Ni, final ensembles M’(Π) and N’(Π)

Want to show that any adversary advantage between M’(Π) and N’(Π) is negligible

Assume not; Contradict the type-0 security of Π

≅ ≈

KEY RENAMING

Want to modify M and N so that keys encrypt other keys in a systematic manner

Rename so that:

M and N have l recoverable keys j1, j2, … , jl

M and N have some hidden keys

M has m hidden keys k1, k2, … , km

N has n hidden keys k1, k2, … , kn

kp encrypts kq only when p q

Can do this because terms do not have key cycles; a “deeper” key gets a smaller index

Get terms M’ and N’ after this renaming

≥

HYBRID PATTERNS

M0, M1, … , Mm and N0, N1, …, Nn to form chain from M’ to N’

Mi = pat(M’, recoverable(M’) {k1, k2, … , ki})

Nj = pat(N’, recoverable(N’) {k1, k2, … , kj})
M0 = pat(M’) and Mm = M’ and N0 = pat(N’) and Nn = N’

Mi and Ni are the patterns the adversary could see in M’ and N’ if
they had access to (hitherto hidden) keys k1 through ki

Acyclicity: these keys do not give access to other keys kj where j>i

∪

∪

DEFINING ENSEMBLES

We map each M0, M1, … , Mm and N0, N1, …, Nn to an ensemble

Lift the Conv algorithm to work over patterns, not just terms

Generate a new fixed key (k0) using K()

Map to E(0, (k0)), tag with “ciphertext”

(k0) is only for use with

τ η

□ τ

τ □

ADVERSARY ADVANTAGE

We know that M(Π) M’(Π) and N(Π) N’(Π) (only keys have
been renamed). Want to show that M’(Π) N’(Π)

Assume there is an adversary A who can distinguish between
M’(Π) and N’(Π) with non-negligible advantage

() = Pr[y M’(Π) | A(, y) = 1] - Pr[y N’(Π) | A(, y) = 1]

For some constant c and infinite set S, () > -c for all S.

≈ ≈
≈

λ η ← η ← η

λ η η η ∈

ADVERSARY ADVANTAGE

We define the following for 0 i m and 1 j n:

pi() = Pr[y Mi(Π,) | A(, y) = 1]

qj() = Pr[y Nj(Π,) | A(, y) = 1]

Since M’ = Mm and N’ = Nn, = pm - qn. Also p0 = q0. So,

 = (pm - pm-1) + (pm-1 - pm-2) + … + (p1 - p0) + (q0 - q1) + (q1 - q2) + … + (qn-1 - qn)

Have m+n quantities that add up to . Triangle inequality: There is either

1 i m s.t. pi - pi-1 /(m + n), or

1 j n s.t. qj - qj-1 /(m + n)

A suitable i or j exists for each such , and since we have finite, fixed summands, there is some i or
j that works for infinitely many .

≤ ≤ ≤ ≤

η ← η η

η ← η η

λ

λ

λ

≤ ≤ ≥ λ

≤ ≤ ≥ λ

η
η

ADVERSARY ADVANTAGE

Let i be such an index. There exists an infinite set S’ S s.t.
pi() - pi-1() ()/(m + n) for each S’.

A suitable i or j exists for each such , and since we have finite,
fixed summands, there is some i or j that works for infinitely
many .

Using this adversary A, we want to construct a computational
adversary A0 who violates the type-0 security of Π.

⊆
η η ≥ λ η η ∈

η

η

ADVERSARY A0

A0 generates (k) using K() for every k in M’

It then runs an algorithm called Conv2 on M’ (coming up) and obtains a result
y

It then calls A using the parameter and y, and returns the result.

A0 (and Conv2) has access to two oracles f and g, instantiated either as

f = EKi(.) for Ki K(); g = EK0(.) for K0 K(), or

f = EK0(.) for K0 K(); g = EK0(.) for K0 K()

τ η

η

← η ← η

← η ← η

ALGORITHM CONV2

Conv2 same as Conv except for encryptions; everything tagged as earlier

For encryptions of the form {M*}k

If k {j1, …, jl, k1, …, ki-1}, map to E(Conv2(M*), k)

If k = ki, map to f(Conv2(M*))

If k in {ki+1, …, km}, map to g(0)

Encryption under a recoverable key k corresponds to encryption under the associated key (k).

Encryption under a hidden key from {k1, …, ki-1} also corresponds to encryption under the
associated key (k).

Encryption under a hidden key in {ki+1, …, km} results in 0 encrypted under K0.

∈

τ

τ

CONTRADICTING TYPE-0 SECURITY

We have

pi() = Pr[Ki, K0 K() | A0
EKi(.), EK0(.)() = 1]

pi-1() = Pr[K0 K() | A0
EK0(.), EK0(.)() = 1]

Conv2(M’) returns a sample from

Mi() when f = EKi(.) and g = EK0(.), and

Mi-1() when f = EK0(0) and g = EK0(0)

For pi, encryption under the hidden key ki corresponds to encryption under Ki

For pi-1, encryption under ki results in 0 encrypted under K0.

η ← η η

η ← η η

Π

Π

CONTRADICTING TYPE-0 SECURITY

Therefore, for infinitely many values of , we get

adv() for A0 is pi() - pi-1()

()/(m + n)

> -c/(m+n)

> -(c+1)

η

η η η

≥ λ η

η

η

