COL876: SPECIAL TOPICS IN FORMAL METHODS

Formal verification of security protocols

Lecture 11, 19 October 2023

RECAP: COMPUTATIONAL SOUNDNESS

- Want to map symbolic terms to distributions over strings
- Map symbolic attacks to non-negligible adversary advantage
- Need to keep track of adversary "view"
- "What can an adversary learn from an encrypted term?" "Patterns"
- Equivalence of patterns = = Indistinguishability of ciphertexts

PATTERNS FROM TERMS

- $P, Q:=i|k|(P, Q)\left|\{P\}_{k}\right| \square \quad$ where $i \in\{0, I\}$ and $k \in$ Keys
- Given a set of keys T and a term M, pat(M, T) gives the pattern that an attacker can see in M if he has access to T
- Inductive definition; two cases for encryption
- $\operatorname{pat}(M)=\operatorname{pat}(M,\{k \in \operatorname{Keys} \mid M \vdash k\}) ; M \equiv N$ iff $\operatorname{pat}(M)=\operatorname{pat}(N)$
- $\mathrm{M} \cong \mathrm{N}$ iff $\mathrm{M} \equiv \mathrm{N} \sigma$ for some bijection σ on Keys

PATTERNS FROM TERMS: EXAMPLES

- $0 \cong 0$ and $0 \nsubseteq \mathrm{I}$ and $\{0\}_{\mathrm{k}} \cong\{\mathrm{I}\}_{\mathrm{k}}$ and $\{0\}_{\mathrm{k}} \cong\{\mathrm{I}\}_{\mathrm{k}^{\prime}}$
- $\left(\mathrm{k},\{0\}_{\mathrm{k}}\right) \neq\left(\mathrm{k},\{\mathrm{I}\}_{\mathrm{k}}\right)$, but $\left(\mathrm{k},\left\{\left(\{0\}_{\mathrm{k}}, 0\right)\right\}_{\mathrm{k}}\right) \cong\left(\mathrm{k},\left\{\left(\{1\}_{\mathrm{k}}, 0\right)\right\}_{\mathrm{k}}\right)$.
- $\left(\{0\}_{k},\{0\}_{k}\right) \cong\left(\{0\}_{k},\{\mathrm{I}\}_{k}\right)$ Cannot identify identical plaintexts
- $\left(\{0\}_{k},\{1\}_{k}\right) \cong\left(\{0\}_{k},\{1\}_{k_{k}}\right)$ Cannot identify whether same key is used
- $\{(\mathrm{I}, \mathrm{O}),(\mathrm{O}, \mathrm{I}))_{\mathrm{k}} \cong\{0\}_{\mathrm{k}}$ Length of plaintext is not revealed

INITIAL ASSOCIATIONS

- Given an encryption scheme $\Pi=(\mathrm{K}, \mathrm{E}, \mathrm{D})$, associate to a term Ma distribution on strings $M(\Pi, \eta)$; lift to collection $M(\Pi)$
- Define an algorithm Conv which works over terms as follows:
- Map each key k occurring in M to a string of bits $\tau(\mathrm{k})$ using $\mathrm{K}(\eta)$
- Map constants O and I in the term algebra to their bitstrings
- Lift easily to pairs; for $M=\operatorname{senc}\left(M^{\prime}, k\right)$, map it to $E\left(M^{\prime}(\Pi, \eta), \tau(k)\right)$
- Tag every bitstring with its type: "key", "bool", "pair", "ciphertext"

RECAP: ENCRYPTION SCHEMES

- An encryption scheme Π, is a triple of PTIME algorithms (K, E, D) parametrized by η
- K is the key generation algorithm
- input: parameter, coins
- E is the encryption algorithm
- input: key, string, coins
- D is the decryption algorithm
- input: key, string
$\mathrm{D}(\mathrm{k}, \mathrm{E}(\mathrm{k}, \mathrm{m}, \mathrm{r}))=\mathrm{m}$ if m is a valid plaintext, 0 otherwise

RECAP: NEGLIGIBLE ADVANTAGE

- Probabilistic PTIME adversary A
- A function $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{R}$ is negligible if, for all $\mathrm{c}>0$, there exists an N_{c} such that $\mathrm{f}(\eta) \leq \eta^{-\mathrm{c}}$ for all $\eta \geq \mathrm{N}_{\mathrm{c}}$.
- $\operatorname{adv}(\eta):=\operatorname{Pr}[\mathrm{x} \leftarrow \mathrm{D} \mid \mathrm{A}(\eta, \mathrm{x})=\mathrm{I}]-\operatorname{Pr}\left[\mathrm{x} \leftarrow \mathrm{D}^{\prime} \mid \mathrm{A}(\eta, \mathrm{x})=\mathrm{I}\right]$
- We say D and D^{\prime} are indistinguishable ($\mathrm{D} \approx \mathrm{D}^{\prime}$) if for every probabilistic PTIME adversary A, $\operatorname{adv}(\eta)$ is negligible

EQUIVALENCE IMPLIES INDISTINGUISHABILITY

- $M \cong$ Nimplies $M(\Pi) \approx N(\Pi)$
- $0 \cong 0$, so $\circ(\Pi) \approx 0(\Pi)$. Both ensembles put all the probability mass on <o, "bool">
- $\{0\}_{k} \cong\{1\}_{k}$, so $\{0\}_{k}(\Pi) \approx\{1\}_{k}(\Pi)$
- Non-trivial; depends heavily on our assumptions about type-o security of the encryption scheme

EQUIVALENCE IMPLIES INDISTINGUISHABILITY

- Let M and N be terms* and Π an encryption scheme*. If $M \cong N$, then $M(\Pi) \approx N(\Pi)$.
- Overall steps:
- Assume M and N are pattern equivalent.
- Rename keys
- "Hybrid patterns" M_{i} and N_{i} to form a chain between the renamed versions of M and N to maintain pattern equivalence
- Define ensembles for each M_{i} and N_{i}, final ensembles $M^{\prime}(\Pi)$ and $N^{\prime}(\Pi)$
- Want to show that any adversary advantage between $M^{\prime}(\Pi)$ and $N^{\prime}(\Pi)$ is negligible
- Assume not; Contradict the type-o security of Π

KEY RENAMING

- Want to modify M and N so that keys encrypt other keys in a systematic manner
- Rename so that:
- M and N have I recoverable keys $j_{1}, j_{2}, \ldots, j_{1}$
- M and N have some hidden keys
- M has m hidden keys $\mathrm{k}_{\mathrm{I}}, \mathrm{k}_{2}, \ldots, \mathrm{k}_{\mathrm{m}}$
- N has n hidden keys $\mathrm{k}_{\mathrm{I}}, \mathrm{k}_{2}, \ldots, \mathrm{k}_{\mathrm{n}}$
- k_{p} encrypts k_{q} only when $\mathrm{p} \geq \mathrm{q}$
- Can do this because terms do not have key cycles; a "deeper" key gets a smaller index
- Get terms M^{\prime} and N^{\prime} after this renaming

HYBRID PATTERNS

- $M_{0}, M_{I}, \ldots, M_{m}$ and $N_{0}, N_{I}, \ldots, N_{n}$ to form chain from M^{\prime} to N^{\prime}
- $M_{i}=\operatorname{pat}\left(M^{\prime}\right.$, recoverable $\left.\left(M^{\prime}\right) \cup\left\{k_{\mathrm{t}}, \mathrm{k}_{2}, \ldots, \mathrm{k}_{\mathrm{i}}\right\}\right)$
- $\mathrm{N}_{\mathrm{j}}=\operatorname{pat}\left(\mathrm{N}^{\prime}\right.$, recoverable $\left.\left(\mathrm{N}^{\prime}\right) \cup\left\{\mathrm{k}_{\mathrm{I}}, \mathrm{k}_{2}, \ldots, \mathrm{k}_{\mathrm{j}}\right\}\right)$
- $M_{\circ}=\operatorname{pat}\left(M^{\prime}\right)$ and $M_{m}=M^{\prime}$ and $N_{o}=\operatorname{pat}\left(N^{\prime}\right)$ and $N_{n}=N^{\prime}$
- M_{i} and N_{i} are the patterns the adversary could see in M^{\prime} and N^{\prime} if they had access to (hitherto hidden) keys k_{I} through k_{i}
- Acyclicity: these keys do not give access to other keys k_{j} where $j>i$

DEFINING ENSEMBLES

- We map each $M_{0}, M_{1}, \ldots, M_{m}$ and $N_{0}, N_{1}, \ldots, N_{n}$ to an ensemble
- Lift the Conv algorithm to work over patterns, not just terms
- Generate a new fixed key $\tau\left(\mathrm{k}_{\mathrm{o}}\right)$ using $\mathrm{K}(\eta)$
- Map \square to $\mathrm{E}\left(0, \tau\left(\mathrm{k}_{0}\right)\right)$, tag with "ciphertext"
- $\tau\left(\mathrm{k}_{\mathrm{o}}\right)$ is only for use with \square

ADVERSARY ADVANTAGE

- We know that $M(\Pi) \approx M^{\prime}(\Pi)$ and $N(\Pi) \approx N^{\prime}(\Pi)$ (only keys have been renamed). Want to show that $\mathrm{M}^{\prime}(\Pi) \approx \mathrm{N}^{\prime}(\Pi)$
- Assume there is an adversary A who can distinguish between $M^{\prime}(\Pi)$ and $\mathrm{N}^{\prime}(\Pi)$ with non-negligible advantage
- $\lambda(\eta)=\operatorname{Pr}\left[\mathrm{y} \leftarrow \mathrm{M}^{\prime}(\Pi) \mid \mathrm{A}(\eta, \mathrm{y})=\mathrm{I}\right]-\operatorname{Pr}\left[\mathrm{y} \leftarrow \mathrm{N}^{\prime}(\Pi) \mid \mathrm{A}(\eta, \mathrm{y})=\mathrm{I}\right]$
- For some constant c and infinite set $\mathrm{S}, \lambda(\eta)>\eta^{-\mathrm{c}}$ for all $\eta \in \mathrm{S}$.

ADVERSARY ADVANTAGE

- We define the following for $\mathrm{o} \leq \mathrm{i} \leq \mathrm{m}$ and $\mathrm{I} \leq \mathrm{j} \leq \mathrm{n}$:
- $\mathrm{p}_{\mathrm{i}}(\eta)=\operatorname{Pr}\left[\mathrm{y} \leftarrow \mathrm{M}_{\mathrm{i}}(\Pi, \eta) \mid \mathrm{A}(\eta, \mathrm{y})=\mathrm{I}\right]$
- $\mathrm{q}_{\mathrm{i}}(\eta)=\operatorname{Pr}\left[\mathrm{y} \leftarrow \mathrm{N}_{\mathrm{j}}(\Pi, \eta) \mid \mathrm{A}(\eta, \mathrm{y})=\mathrm{I}\right]$
- Since $M^{\prime}=M_{m}$ and $N^{\prime}=N_{n}, \lambda=p_{m}-q_{n}$. Also $p_{o}=q_{0}$. So,

$$
\lambda=\left(p_{m}-p_{m-1}\right)+\left(p_{m-\mathrm{I}}-p_{m-2}\right)+\ldots+\left(p_{\mathrm{r}}-p_{0}\right)+\left(q_{0}-q_{\mathrm{I}}\right)+\left(\mathrm{q}_{\mathrm{I}}-\mathrm{q}_{2}\right)+\ldots+\left(\mathrm{q}_{\mathrm{n}-\mathrm{I}}-\mathrm{q}_{\mathrm{n}}\right)
$$

- Have $\mathrm{m}+\mathrm{n}$ quantities that add up to λ. Triangle inequality: There is either
- $\mathrm{I} \leq \mathrm{i} \leq m$ s.t. $\mathrm{p}_{\mathrm{i}}-\mathrm{p}_{\mathrm{i}-\mathrm{I}} \geq \lambda /(\mathrm{m}+\mathrm{n})$, or
- $\mathrm{I} \leq \mathrm{j} \leq \mathrm{n}$ s.t. $\mathrm{q}_{\mathrm{j}}-\mathrm{q}_{\mathrm{j}-\mathrm{I}} \geq \lambda /(\mathrm{m}+\mathrm{n})$
- A suitable i or j exists for each such η, and since we have finite, fixed summands, there is some i or j that works for infinitely many η.

ADVERSARY ADVANTAGE

- Let i be such an index. There exists an infinite set $\mathrm{S}^{\prime} \subseteq \mathrm{S}$ s.t. $\mathrm{p}_{\mathrm{i}}(\eta)-\mathrm{p}_{\mathrm{i}-\mathrm{I}}(\eta) \geq \lambda(\eta) /(\mathrm{m}+\mathrm{n})$ for each $\eta \in S^{\prime}$.
- A suitable i or j exists for each such η, and since we have finite, fixed summands, there is some i or j that works for infinitely many η.
- Using this adversary A, we want to construct a computational adversary A_{\circ} who violates the type-o security of Π.

ADVERSARY A。

- A_{\circ} generates $\tau(\mathrm{k})$ using $\mathrm{K}(\eta)$ for every k in M^{\prime}
- It then runs an algorithm called Conv2 on M' (coming up) and obtains a result y
- It then calls A using the parameter η and y, and returns the result.
- A_{\circ} (and Conv2) has access to two oracles f and g, instantiated either as
- $\mathrm{f}=\mathscr{E}_{\mathrm{K}_{\mathrm{i}}}($.$) for \mathrm{K}_{\mathrm{i}} \leftarrow \mathrm{K}(\eta) ; \mathrm{g}=\mathcal{E}_{\mathrm{K}_{0}}($.$) for \mathrm{K}_{0} \leftarrow \mathrm{~K}(\eta)$, or
- $\mathrm{f}=\mathscr{E}_{\mathrm{K}_{0}}($.$) for \mathrm{K}_{0} \leftarrow \mathrm{~K}(\eta) ; \mathrm{g}=\mathcal{E}_{\mathrm{K}_{0}}($.$) for \mathrm{K}_{0} \leftarrow \mathrm{~K}(\eta)$

ALGORITHM CONV2

- Conv2 same as Conv except for encryptions; everything tagged as earlier
- For encryptions of the form $\left\{\mathrm{M}^{*}\right\}_{\mathrm{k}}$
- If $\mathrm{k} \in\left\{\mathrm{j}_{\mathrm{I}}, \ldots, \mathrm{j}_{1}, \mathrm{k}_{\mathrm{I}}, \ldots, \mathrm{k}_{\mathrm{i}-\mathrm{I}}\right\}$, map to $\mathrm{E}\left(\operatorname{Conv2} 2\left(\mathrm{M}^{*}\right), \mathrm{k}\right)$
- If $\mathrm{k}=\mathrm{k}_{\mathrm{i}}$, map to $\mathrm{f}\left(\operatorname{Conv2}\left(\mathrm{M}^{*}\right)\right)$
- If k in $\left\{\mathrm{k}_{\mathrm{i}+\mathrm{I}}, \ldots, \mathrm{k}_{\mathrm{m}}\right\}$, map to $\mathrm{g}(0)$
- Encryption under a recoverable key k corresponds to encryption under the associated key $\tau(\mathrm{k})$.
- Encryption under a hidden key from $\left\{\mathrm{k}_{\mathrm{I}}, \ldots, \mathrm{k}_{\mathrm{i}-\mathrm{I}}\right\}$ also corresponds to encryption under the associated key $\tau(\mathrm{k})$.
- Encryption under a hidden key in $\left\{\mathrm{k}_{\mathrm{i}_{\mathrm{i}}}, \ldots, \mathrm{k}_{\mathrm{m}}\right\}$ results in 0 encrypted under K_{\circ}.

CONTRADICTING TYPE-o SECURITY

- We have
${ }^{-1} \mathrm{p}_{\mathrm{i}}(\eta)=\operatorname{Pr}\left[\mathrm{K}_{\mathrm{i}}, \mathrm{K}_{0} \leftarrow \mathrm{~K}(\eta) \mid \mathrm{A}_{0}{ }^{{ }^{\circ} \mathrm{K}_{\mathrm{i}}(\cdot),{ }_{\mathrm{K}}}{ }_{\mathrm{K}}^{0}{ }^{(\cdot)}(\eta)=\mathrm{I}\right]$
- $\mathrm{p}_{\mathrm{i}-\mathrm{I}}(\eta)=\operatorname{Pr}\left[\mathrm{K}_{0} \leftarrow \mathrm{~K}(\eta) \mid \mathrm{A}_{0}{ }^{{ }_{\mathrm{K}}^{0}} \mathbf{(.)}\left({ }^{(.)}{ }_{\mathrm{K}_{0}}().(\eta)=\mathrm{I}\right]\right.$
- Conv2(M') returns a sample from
- $\mathrm{M}_{\mathrm{i}}(\Pi)$ when $\mathrm{f}=\mathscr{E}_{\mathrm{K}_{\mathrm{i}}}($.$) and \mathrm{g}=\mathcal{E}_{\mathrm{K}_{0}}($.$) , and$
- $\mathrm{M}_{\mathrm{i}-\mathrm{I}}(\Pi)$ when $\mathrm{f}=\mathscr{E}_{\mathrm{K}_{0}}(0)$ and $\mathrm{g}=\mathscr{E}_{\mathrm{K}_{0}}(0)$
- For p_{i}, encryption under the hidden key k_{i} corresponds to encryption under K_{i}
- For $\mathrm{p}_{\mathrm{i}-\mathrm{I}}$, encryption under k_{i} results in 0 encrypted under K_{0}.

CONTRADICTING TYPE-o SECURITY

- Therefore, for infinitely many values of η, we get

$$
\begin{aligned}
& \operatorname{adv}(\eta) \text { for } \mathrm{A}_{0} \text { is } \mathrm{p}_{\mathrm{i}}(\eta)-\mathrm{p}_{\mathrm{i}-\mathrm{I}}(\eta) \\
& \geq \lambda(\eta) /(\mathrm{m}+\mathrm{n}) \\
& >\eta^{-\mathrm{c}} /(\mathrm{m}+\mathrm{n}) \\
& \quad>\eta^{-(c+\mathrm{I})}
\end{aligned}
$$

