
Formal verification of security protocols

Lecture 9, 9 October 2023

COL876: SPECIAL TOPICS IN FORMAL METHODS

RECAP

Saw some tools: ProVerif, Tamarin…

There’s a whole zoo of tools

Some more specialized than others

Scyther, Avispa, APTE, DeepSec, SAT-Equiv &c.

INSECURITY PROBLEM

Given a protocol Pr, is there an attack?

Undecidable in the general case

saw reduction from 2CM reachability

Decidable for boundedly many sessions! [RT03]

Consider the “K-bounded insecurity problem”

Given a protocol Pr, is there an attack involving K sessions?≤

K-BOUNDED INSECURITY PROBLEM

Make copies of each role systematically, renaming variables

Bake freshly generated names into the copy; no need to generate
at runtime

Suffices to check existence of attack involving K copies in all

Each role thought of as a sequence of recv send implications→

K-BOUNDED INSECURITY PROBLEM

Attack is a sequence and substitution with

dom() = vars()

for every and x vars(si): there is s.t. x vars(rj)

for each : and secret.

[RT03]: If there is an attack (,), then there is one (,) where
for all x such that B is a bound obtained from only the protocol description

Guess interleaving , small substitution , check if above derivations hold.

ξ = r0s0r1s1…rnsn σ

σ ξ

i ≤ n ∈ j ≤ i ∈

i ≤ n X0
I ∪ {s0σ, …, si−1σ} ⊢ riσ X0

I ∪ {s0σ, …, snσ} ⊢

ξ σ ξ τ |τ(x) | < B

ξ τ

CONSTRAINT SATISFACTION

Used in many tools; more systematic way of “guessing”

Express derivation checks as constraints over vars() and B

Solution to this constraint system is a substitution which

preserves derivability requirements, and

respects the bound B

τ

ξ

τ

CONSTRAINT SYSTEM

Constraints s.t. for every :

 for

If x vars(Si), then there is s.t. x vars(uj)

Solution is a substitution with

dom() = vars(C), and

 for every

C = {(S1 ⊩ u1), …, (Sn ⊩ un)} i ≤ n

Si−1 ⊆ Si i > 1

∈ j ≤ i ∈

τ

τ

Sτ ⊢ uτ (S ⊩ u) ∈ C

EXAMPLE

Initiator a talks to b: (pk(ska), aenc(m, pk(skb)))

Responder b replies to a: (pk(ska), aenc(x, pkb)) aenc(x, pk(ska))

Constraint system C defined as follows.

with

Potential solution:

[] →

→

S0, (pk(ska), aenc(m, pk(skb)) ⊩ aenc(x, pk(ska))

S0 = {pk(ska), pk(skb), ski}

τ = {x ↦ m}

EXAMPLE: ATTACK

Initiator a talks to b: (pk(ska), aenc(m, pk(skb)))

Responder b replies to a: (y, aenc(x, pkb)) aenc(x, y)

Constraint system C defined as follows.

with

Potential solution:

[] →

→

S0, (pk(ska), aenc(m, pk(skb)) ⊩ (y, aenc(x, pk(skb)))

S0, (pk(ska), aenc(m, pk(skb)), aenc(x, y) ⊩ m

S0 = {pk(ska), pk(skb), ski, pk(ski)}

τ = {x ↦ m, y ↦ pk(ski)}

EXAMPLE

CONSTRAINT SOLVING

Algorithm: Sequence of rules to simplify a constraint system

Non-deterministic; more than one rule might be applicable

Each application implicitly builds

If we keep applying these rules, can arrive at a “simple” constraint
system — terms to the right of each are just single variables

Decidable if a simple constraint system has a solution or not

τ

⊩

CONSTRAINT SOLVING

Depth-first search; might arrive at an insoluble system due to
applying rules in a particular order

Backtrack and retry with a different sequence of rules!

If all paths explored but no solution, insoluble system

If current system is soluble, so is the original

Every reduction path will end in a simple constraint system!

SIMPLIFICATION RULES

Redundancy rule: Remove T u if u is already deducible from
T along with variables from solved constraints

Function rule: Guess that the attacker built f(u, v) from u and v

Unsatisfiable rule: There is some ground constraint T u such
that u is not deducible from T

Unification rules: Guess a possible instantiation of variables
by unifying two subterms of a constraint

⊩

⊩

σ

SIMPLIFICATION RULES

Formally, this procedure is:

Sound: any solution found by the procedure is indeed a solution of the
constraint system.

Complete: whenever there is a solution of the constraint system, there is a
path in the tree of possible simplifications that leads to a solution.

Terminating: there is no infinite path in the tree.

Can be extended with various equational theories and security properties.

