COL876: SPECIAL TOPICS IN FORMAL METHODS

Formal verification of security protocols

Lecture 9, 9 October 2023

- Saw some tools: ProVerif, Tamarin...
- There's a whole zoo of tools
- Some more specialized than others
- Scyther, Avispa, APTE, DeepSec, SAT-Equiv &c.

INSECURITY PROBLEM

- Given a protocol Pr, is there an attack?
- Undecidable in the general case
 - saw reduction from 2CM reachability
- Decidable for boundedly many sessions! [RT03]
- Consider the "K-bounded insecurity problem"
 - Given a protocol Pr, is there an attack involving \leq K sessions?

K-BOUNDED INSECURITY PROBLEM

- Make copies of each role systematically, renaming variables
- Bake freshly generated names into the copy; no need to generate at runtime
- Suffices to check existence of attack involving K copies in all
- Each role thought of as a sequence of recv \rightarrow send implications

K-BOUNDED INSECURITY PROBLEM

- Attack is a sequence $\xi = r_0 s_0 r_1 s_1 \dots r_n s_n$ and substitution σ with
 - $dom(\sigma) = vars(\xi)$
 - for every $i \le n$ and $x \in vars(s_i)$: there is $j \le i$ s.t. $x \in vars(r_j)$
 - for each $i \leq n: X_I^0 \cup \{s_0\sigma, \dots, s_{i-1}\sigma\} \vdash r_i\sigma$ and $X_I^0 \cup \{s_0\sigma, \dots, s_n\sigma\} \vdash$ secret.
- [RT03]: If there is an attack (ξ, σ) , then there is one (ξ, τ) where $\tau(x) < B$ for all x such that B is a bound obtained from only the protocol description
- Guess interleaving ξ , small substitution τ , check if above derivations hold.

CONSTRAINT SATISFACTION

- Used in many tools; more systematic way of "guessing" τ
- Express derivation checks as constraints over vars(ξ) and B
- Solution to this constraint system is a substitution τ which
 - preserves derivability requirements, and
 - respects the bound B

CONSTRAINT SYSTEM

- Constraints $C = \{(S_1 \Vdash u_1), \dots, (S_n \Vdash u_n)\}$ s.t. for every $i \le n$:
 - $S_{i-1} \subseteq S_i$ for i > 1
 - If $x \in vars(S_i)$, then there is $j \le i$ s.t. $x \in vars(u_j)$
- Solution is a substitution τ with
 - $dom(\tau) = vars(C)$, and
 - $S\tau \vdash u\tau$ for every $(S \Vdash u) \in C$

EXAMPLE

 $A \rightarrow B : A, enc(m, pk(B))$ $B \rightarrow A : enc(m, pk(A))$

- Initiator a talks to b: $[] \rightarrow (pk(sk_a), aenc(m, pk(sk_b)))$
- Responder b replies to a: $(pk(sk_a), aenc(x, pk_b)) \rightarrow aenc(x, pk(sk_a))$
- Constraint system C defined as follows.

 S_0 , (pk(sk_a), aenc(m, pk(sk_b)) \Vdash aenc(x, pk(sk_a))

with $S_0 = \{ pk(sk_a), pk(sk_b), sk_i \}$

• Potential solution: $\tau = \{x \mapsto m\}$

EXAMPLE: ATTACK

 $A \rightarrow B : A, enc(m, pk(B))$ $B \rightarrow A : enc(m, pk(A))$

- Initiator a talks to b: [] \rightarrow (pk(sk_a), aenc(m, pk(sk_b)))
- Responder b replies to a: $(y, aenc(x, pk_b)) \rightarrow aenc(x, y)$
- Constraint system C defined as follows.

 $S_0, (pk(sk_a), aenc(m, pk(sk_b)) \Vdash (y, aenc(x, pk(sk_b)))$ $S_0, (pk(sk_a), aenc(m, pk(sk_b)), aenc(x, y) \Vdash m$ $with S_0 = \{pk(sk_a), pk(sk_b), sk_i, pk(sk_i)\}$

Potential solution: $\tau = \{x \mapsto m, y \mapsto pk(sk_i)\}$

EXAMPLE

 $A \rightarrow B : enc((A, n_a), pk(B))$ $B \rightarrow A : enc((n_a, n_b), pk(A))$ $A \rightarrow B : enc(n_b, pk(B))$

CONSTRAINT SOLVING

- Algorithm: Sequence of rules to simplify a constraint system
- Non-deterministic; more than one rule might be applicable
- Each application implicitly builds τ
- If we keep applying these rules, can arrive at a "simple" constraint system terms to the right of each I⊢ are just single variables
- Decidable if a simple constraint system has a solution or not

CONSTRAINT SOLVING

- Depth-first search; might arrive at an insoluble system due to applying rules in a particular order
 - Backtrack and retry with a different sequence of rules!
- If all paths explored but no solution, insoluble system
- If current system is soluble, so is the original
- Every reduction path will end in a simple constraint system!

SIMPLIFICATION RULES

- Redundancy rule: Remove T I⊢ u if u is already deducible from T along with variables from solved constraints
- Function rule: Guess that the attacker built f(u, v) from u and v
- Unsatisfiable rule: There is some ground constraint T II- u such that u is not deducible from T
- Unification rules: Guess a possible instantiation σ of variables by unifying two subterms of a constraint

SIMPLIFICATION RULES

- Formally, this procedure is:
 - Sound: any solution found by the procedure is indeed a solution of the constraint system.
 - Complete: whenever there is a solution of the constraint system, there is a path in the tree of possible simplifications that leads to a solution.
 - Terminating: there is no infinite path in the tree.
- Can be extended with various equational theories and security properties.