COL876: SPECIAL TOPICS IN FORMAL METHODS

Formal verification of security protocols

Lecture 9, 9 October 2023

RECAP

- Saw some tools: ProVerif, Tamarin...
- There's a whole zoo of tools
- Some more specialized than others
- Scyther, Avispa, APTE, DeepSec, SAT-Equiv ©ec.

INSECURITY PROBLEM

- Given a protocol Pr, is there an attack?
- Undecidable in the general case
- saw reduction from 2CM reachability
- Decidable for boundedly many sessions! [RT03]
- Consider the "K-bounded insecurity problem"
- Given a protocol Pr , is there an attack involving $\leq \mathrm{K}$ sessions?

K-BOUNDED INSECURITY PROBLEM

- Make copies of each role systematically, renaming variables
- Bake freshly generated names into the copy; no need to generate at runtime
- Suffices to check existence of attack involving K copies in all
- Each role thought of as a sequence of recv \rightarrow send implications

K-BOUNDED INSECURITY PROBLEM

- Attack is a sequence $\xi=r_{0} s_{0} r_{1} s_{1} \ldots r_{n} s_{n}$ and substitution σ with
- $\operatorname{dom}(\sigma)=\operatorname{vars}(\xi)$
- for every $i \leq n$ and $\mathrm{x} \in \operatorname{vars}\left(\mathrm{s}_{\mathrm{i}}\right)$: there is $j \leq i$ s.t. $\mathrm{x} \in \operatorname{vars}\left(\mathrm{r}_{\mathrm{j}}\right)$
- for each $i \leq n: X_{I}^{0} \cup\left\{s_{0} \sigma, \ldots, s_{i-1} \sigma\right\} \vdash r_{i} \sigma$ and $X_{I}^{0} \cup\left\{s_{0} \sigma, \ldots, s_{n} \sigma\right\} \vdash$ secret.
- [RTo3]: If there is an attack (ξ, σ), then there is one (ξ, τ) where $\tau(x)<B$ for all x such that B is a bound obtained from only the protocol description
- Guess interleaving ξ, small substitution τ, check if above derivations hold.

CONSTRAINT SATISFACTION

- Used in many tools; more systematic way of "guessing" τ
- Express derivation checks as constraints over vars(ξ) and B
- Solution to this constraint system is a substitution τ which
- preserves derivability requirements, and
- respects the bound B

CONSTRAINT SYSTEM

- Constraints $C=\left\{\left(S_{1} \Vdash u_{1}\right), \ldots,\left(S_{n} \Vdash u_{n}\right)\right\}$ s.t. for every $i \leq n$:
- $S_{i-1} \subseteq S_{i}$ for $i>1$
- If $\mathrm{x} \in \operatorname{vars}\left(\mathrm{S}_{\mathrm{i}}\right)$, then there is $j \leq i$ s.t. $\mathrm{x} \in \operatorname{vars}\left(\mathrm{u}_{\mathrm{j}}\right)$
- Solution is a substitution τ with
- $\operatorname{dom}(\tau)=\operatorname{vars}(\mathrm{C})$, and
- $S \tau \vdash u \tau$ for every $(S \Vdash u) \in C$

EXAMPLE

$A \rightarrow B: A, \operatorname{enc}(m, \operatorname{pk}(B))$
 $B \rightarrow A: \operatorname{enc}(m, \operatorname{pk}(A))$

- Initiator a talks to b: [] $\rightarrow\left(\mathrm{pk}_{\mathrm{k}}\left(\mathrm{sk}_{\mathrm{a}}\right)\right.$, aenc $\left.\left(\mathrm{m}, \mathrm{pk}\left(\mathrm{sk}_{\mathrm{b}}\right)\right)\right)$
- Responder breplies to $\mathrm{a}:\left(\mathrm{pk}\left(\mathrm{sk}_{\mathrm{a}}\right), \operatorname{aenc}\left(\mathrm{x}, \mathrm{pk}_{\mathrm{b}}\right)\right) \rightarrow \operatorname{aenc}\left(\mathrm{x}, \mathrm{pk}_{\mathrm{k}}\left(\mathrm{sk}_{\mathrm{a}}\right)\right)$
- Constraint system C defined as follows.

$$
\begin{gathered}
S_{0},\left(\operatorname{pk}\left(s k_{a}\right), \operatorname{aenc}\left(m, \operatorname{pk}\left(s k_{b}\right)\right) \Vdash \operatorname{aenc}\left(x, \operatorname{pk}\left(s k_{a}\right)\right)\right. \\
\text { with } S_{0}=\left\{\operatorname{pk}\left(s k_{a}\right), \operatorname{pk}\left(s k_{b}\right), s k_{i}\right\}
\end{gathered}
$$

- Potential solution: $\tau=\{x \mapsto m\}$

EXAMPLE:ATTACK

$A \rightarrow B: A, \operatorname{enc}(m, \operatorname{pk}(B))$
 $B \rightarrow A$: enc $(m, \operatorname{pk}(A))$

- Initiator a talks to b: [] $\rightarrow\left(\mathrm{pk}^{2}\left(\mathrm{sk}_{\mathrm{a}}\right), \operatorname{aenc}\left(\mathrm{m}, \mathrm{pk}_{\mathrm{k}}\left(\mathrm{sk}_{\mathrm{b}}\right)\right)\right)$
- Responder breplies to a: $\left(\mathrm{y}, \operatorname{aenc}\left(\mathrm{x}, \mathrm{pk}_{\mathrm{b}}\right)\right) \rightarrow \operatorname{aenc}(\mathrm{x}, \mathrm{y})$
- Constraint system C defined as follows.

$$
\begin{gathered}
S_{0},\left(\operatorname{pk}\left(s k_{a}\right), \operatorname{aenc}\left(m, \operatorname{pk}\left(s k_{b}\right)\right) \Vdash\left(y, \operatorname{aenc}\left(x, \operatorname{pk}\left(s k_{b}\right)\right)\right)\right. \\
S_{0},\left(\operatorname{pk}\left(s k_{a}\right), \operatorname{aenc}\left(m, \operatorname{pk}\left(s k_{b}\right)\right), \operatorname{aenc}(x, y) \Vdash m\right. \\
\text { with } S_{0}=\left\{\operatorname{pk}\left(s k_{a}\right), \operatorname{pk}\left(s k_{b}\right), s k_{i}, \operatorname{pk}\left(s k_{i}\right)\right\}
\end{gathered}
$$

- Potential solution: $\tau=\left\{x \mapsto m, y \mapsto \operatorname{pk}\left(s k_{i}\right)\right\}$

EXAMPLE

$A \rightarrow B: \operatorname{enc}\left(\left(A, n_{a}\right), \operatorname{pk}(B)\right)$
$B \rightarrow A: \operatorname{enc}\left(\left(n_{a}, n_{b}\right), \operatorname{pk}(A)\right)$
$A \rightarrow B: \operatorname{enc}\left(n_{b}, \operatorname{pk}(B)\right)$

CONSTRAINT SOLVING

- Algorithm: Sequence of rules to simplify a constraint system
- Non-deterministic; more than one rule might be applicable
- Each application implicitly builds τ
- If we keep applying these rules, can arrive at a "simple" constraint system - terms to the right of each \Vdash are just single variables
- Decidable if a simple constraint system has a solution or not

CONSTRAINT SOLVING

- Depth-first search; might arrive at an insoluble system due to applying rules in a particular order
- Backtrack and retry with a different sequence of rules!
- If all paths explored but no solution, insoluble system
- If current system is soluble, so is the original
- Every reduction path will end in a simple constraint system!

SIMPLIFICATION RULES

- Redundancy rule: Remove $\mathrm{T} \Vdash \mathrm{u}$ if u is already deducible from T along with variables from solved constraints
- Function rule: Guess that the attacker built $f(\mathrm{u}, \mathrm{v})$ from u and v
- Unsatisfiable rule: There is some ground constraint $\mathrm{T} \Vdash$ u such that u is not deducible from T
- Unification rules: Guess a possible instantiation σ of variables by unifying two subterms of a constraint

SIMPLIFICATION RULES

- Formally, this procedure is:
- Sound: any solution found by the procedure is indeed a solution of the constraint system.
- Complete: whenever there is a solution of the constraint system, there is a path in the tree of possible simplifications that leads to a solution.
- Terminating: there is no infinite path in the tree.
- Can be extended with various equational theories and security properties.

