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RECAP

Saw some tools: ProVerif, Tamarin… 

There’s a whole zoo of tools 

Some more specialized than others 

Scyther, Avispa, APTE, DeepSec, SAT-Equiv &c.



INSECURITY PROBLEM

Given a protocol Pr, is there an attack? 

Undecidable in the general case 

saw reduction from 2CM reachability 

Decidable for boundedly many sessions! [RT03] 

Consider the “K-bounded insecurity problem” 

Given a protocol Pr, is there an attack involving  K sessions?≤



K-BOUNDED INSECURITY PROBLEM

Make copies of each role systematically, renaming variables 

Bake freshly generated names into the copy; no need to generate 
at runtime 

Suffices to check existence of attack involving K copies in all 

Each role thought of as a sequence of recv  send implications→



K-BOUNDED INSECURITY PROBLEM

Attack is a sequence  and substitution  with 

dom( ) = vars( ) 

for every  and x  vars(si): there is  s.t. x  vars(rj) 

for each :  and  secret. 

[RT03]: If there is an attack ( , ), then there is one ( , ) where  
for all x such that B is a bound obtained from only the protocol description 

Guess interleaving , small substitution , check if above derivations hold.
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CONSTRAINT SATISFACTION

Used in many tools; more systematic way of “guessing”  

Express derivation checks as constraints over vars( ) and B 

Solution to this constraint system is a substitution  which 

preserves derivability requirements, and 

respects the bound B

τ

ξ
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CONSTRAINT SYSTEM

Constraints  s.t. for every : 

 for  

If x  vars(Si), then there is  s.t. x  vars(uj) 

Solution is a substitution  with  

dom( ) = vars(C), and 

 for every 

C = {(S1 ⊩ u1), …, (Sn ⊩ un)} i ≤ n

Si−1 ⊆ Si i > 1

∈ j ≤ i ∈

τ

τ

Sτ ⊢ uτ (S ⊩ u) ∈ C



EXAMPLE

Initiator a talks to b: (pk(ska), aenc(m, pk(skb))) 

Responder b replies to a: (pk(ska), aenc(x, pkb))  aenc(x, pk(ska)) 

Constraint system C defined as follows. 

  

with  

Potential solution: 

[] →

→

S0, (pk(ska), aenc(m, pk(skb)) ⊩ aenc(x, pk(ska))

S0 = {pk(ska), pk(skb), ski}

τ = {x ↦ m}



EXAMPLE: ATTACK

Initiator a talks to b: (pk(ska), aenc(m, pk(skb))) 

Responder b replies to a: (y, aenc(x, pkb))  aenc(x, y) 

Constraint system C defined as follows. 

  

 

with  

Potential solution: 

[] →

→

S0, (pk(ska), aenc(m, pk(skb)) ⊩ (y, aenc(x, pk(skb)))

S0, (pk(ska), aenc(m, pk(skb)), aenc(x, y) ⊩ m

S0 = {pk(ska), pk(skb), ski, pk(ski)}

τ = {x ↦ m, y ↦ pk(ski)}



EXAMPLE



CONSTRAINT SOLVING

Algorithm: Sequence of rules to simplify a constraint system 

Non-deterministic; more than one rule might be applicable 

Each application implicitly builds  

If we keep applying these rules, can arrive at a “simple” constraint 
system — terms to the right of each  are just single variables 

Decidable if a simple constraint system has a solution or not

τ

⊩



CONSTRAINT SOLVING

Depth-first search; might arrive at an insoluble system due to 
applying rules in a particular order 

Backtrack and retry with a different sequence of rules! 

If all paths explored but no solution, insoluble system 

If current system is soluble, so is the original 

Every reduction path will end in a simple constraint system!



SIMPLIFICATION RULES

Redundancy rule: Remove T  u if u is already deducible from 
T along with variables from solved constraints 

Function rule: Guess that the attacker built f(u, v) from u and v 

Unsatisfiable rule: There is some ground constraint T  u such 
that u is not deducible from T 

Unification rules: Guess a possible instantiation  of variables 
by unifying two subterms of a constraint

⊩

⊩

σ



SIMPLIFICATION RULES

Formally, this procedure is:  

Sound: any solution found by the procedure is indeed a solution of the 
constraint system.  

Complete: whenever there is a solution of the constraint system, there is a 
path in the tree of possible simplifications that leads to a solution.  

Terminating: there is no infinite path in the tree. 

Can be extended with various equational theories and security properties. 
 


