COL876: SPECIAL TOPICS IN FORMAL METHODS

Formal verification of security protocols

Lecture 1, 24 July 2023

- Objective: To learn about formally modelling and verifying cryptographic protocols, and use specialized tools for the same
- Involves concepts from automata theory, algorithms, logic, and programming languages
- Ideally, you should have taken COL202 (Discrete Math) and COL352 (Automata & ToC), or some equivalent thereof
- If not, talk to me after class!

- Mostly following class notes, and other uploaded material
- Lecture notes and any ancillary material will be uploaded after class
- Office hours: by appointment only
- Tentative homework/exam and evaluation policy:
 - At most three assignments (~40%)
 - In-class quizzes + class participation (~10%)
 - A final project presentation (~50%)

- Option to do the project individually or in groups of two.
- Individual:
 - Read and present a paper to the class
 - Also submit a written report
 - A list of suitable papers will be provided, but can choose any that is relevant to the course

- Option to do the project individually or in groups of two.
- Group of two:
 - Use an automated tool to model a security protocol from an RFC/standard, and verify at least two properties
 - Present your model to the class and upload code to Github
 - A list of suitable protocols will be provided, but can choose any that is relevant to the course

FORMAL VERIFICATION: WHAT?

- Today's systems are ubiquitous but increasingly complex
- Need absolute guarantees about behaviour; difficult to get just by software testing
- Enter formal verification!
 - Make an abstract mathematical model of system ignore "irrelevant" details
 - Cast any desirable property as a mathematical formula
 - Verify that said formula holds of said model
 - Profit (? Hopefully!)

SECURITY PROTOCOL: WHAT?

- Sequence of message exchanges to achieve some desirable goal
- Built upon various cryptographic schemes used for manipulating information with some guarantees
- Cryptographic schemes can be assumed to be "perfect"
 - Public key crypto and digital signatures have evolved enough to give us some basic assurances about secrecy, authenticity &c.
 - So we're going to ignore attacks on crypto: hash collisions, buffer overflow, side channel attacks &c.

DO WE REALLY NEED VERIFICATION?

- The logic underlying the protocol could itself be flawed!
- Attacks due to incorrect protocol logic:
 - Impersonation of Trusted Platform Modules and/or owners
 - Breach of anonymity while using RFID e-passports
 - An e-voting protocol used by the government of Estonia...

EXAMPLE O

On a public network, two people share a number *m*, which they want kept secret.

 $A \to B:m$ $B \to A:m$

Is this protocol secure? If A and B finish executing this protocol, can a malicious intruder I get to know m?

EXAMPLE O

- The network is public; obviously should not send m in the clear
- Need to ensure secrecy via crypto mechanisms like encryption
- Even if "secret" is secured via crypto, if it is a constant or picked deterministically, replay attacks are possible!
 - Pick a randomly generated number

ASSUMPTIONS

- A and B "honest principals": assumed to not intentionally compromise the protocol
- To honest principals, I is just any other entity on the network
 - They will communicate via the protocol with I, if required
- If a message of the wrong format is received, or none received at all? Up to the implementation!

EXAMPLE 1

On a public network, two people share a randomly generated value m, which they want kept secret.

> $A \rightarrow B : A, enc(m, pk(B))$ $B \rightarrow A : enc(m, pk(A))$

Is this protocol secure? If A and B finish executing this protocol, can a malicious intruder I get to know m?

Perfect crypto; I can learn m from enc(m, k) only if I has the inverse of k

• $enc(m, k) = enc(m', k') \implies m = m'$ and k = k': cannot "accidentally" learn secrets

EX1: MAN IN THE MIDDLE

 $A \rightarrow B : A, enc(m, pk(B))$ $B \rightarrow A : enc(m, pk(A))$

> $A \rightarrow :A, enc(m, pk(B))$ $I \rightarrow B : I, enc(m, pk(B))$ $B \rightarrow I : enc(m, pk(I))$

 $\rightarrow A : \operatorname{enc}(m, \operatorname{pk}(A))$

EXAMPLE 2

 So the previous version suffered a man-in-the-middle attack
Easy fix: include the name of the sender inside the encryption.
A → B : enc((A, enc(m, pk(B))), pk(B)) B → A : enc(m, pk(A))

Is this protocol secure? If A and B finish executing this protocol, can I get to know m?

EX2: TYPE FLAW+MULTI-SESSION

 $A \rightarrow B : enc((A, enc(m, pk(B))), pk(B))$ $B \rightarrow A : enc(m, pk(A))$

 $A \rightarrow : \{(A, \{m\}_B)\}_B$

 $I \to B : \{(I, \{(A, \{m\}_B)\}_B)\}_B\}$ $B \to I : \{(A, \{m\}_B)\}_I$

 $I \rightarrow B : \{(I, \{m\}_B)\}_B$ $B \rightarrow I : \{m\}_I$

$$\rightarrow A: \{m\}_A$$

"Security protocols are three-line programs that people still manage to get wrong" – Roger Needham

PROTOCOL VERIFICATION: HOW?

- Abstract protocol into a formal model (automata, logic &c.)
 - Assume perfect cryptography
- Specify required security guarantees as mathematical properties over these abstract models
- Prove these properties hold, preferably by automated means

SYMBOLIC MODEL: DOLEV & YAO, 1983

- Split each communication into a send and a receive
- I is essentially the network
 - Each send captured by I
 - Each receive assumed to come from I
- A send action need not have a corresponding receive action!

DOLEV-YAO INTRUDER

- Intruder I cannot break encryption, but, on the public channel, can
 - see any message sent on the channel
 - block any message from reaching the intended recipient
 - re-route any message to any principal
 - masquerade as any principal and send messages in their name
 - initiate new communication according to the protocol
 - generate messages according to some rules

MODELLING MESSAGES

- Split each communication into a send and a (potential) receive
- But what about the messages sent and received?
- Messages are not bitstrings
 - Ignore extraneous details like headers, metadata &c.

• Modelled as symbolic terms from a term algebra. $t := m | f(t_1, ..., t_k)$

MORE ABOUT MESSAGES

- When can an agent/intruder send a particular message term?
- When they can generate it, according to particular rules.
- Will only consider "well-formed" protocols
 - Honest principals can always generate whatever messages they need to send according to the protocol
 - Need to check correct generation only for the intruder

PROOF RULES FOR MESSAGES

$\frac{1}{X\vdash m}\mathbf{ax}(m\in X)$	$\frac{X \vdash k}{X \vdash pk(k)} \mathbf{pk}$
$\frac{X \vdash (t_1, t_2)}{X \vdash t_i} $ split	$\frac{X \vdash t X \vdash u}{X \vdash (t, u)} \mathbf{pair}$
$\frac{X \vdash \operatorname{enc}(t, \operatorname{pk}(k)) X \vdash k}{X \vdash t} \text{ adec}$	$\frac{X \vdash t X \vdash pk(k)}{X \vdash enc(t, pk(k))} aenc$

Proof system for a term algebra with pairing and asymmetric encryption

VERIFYING PROPERTIES

- Many properties involve looking for a proof using these rules
- Passive intruder problem: can the intruder violate some desired property just by observing traffic on the network?
- Active intruder problem: can the intruder violate some desired property by orchestrating DY-allowable behaviours and then observing the resulting network traffic?

VERIFYING PROPERTIES

- Passive intruder problem merely checks abstract derivability
 - For simple systems, in PTIME
- Active intruder problem needs taking into account various sources of unboundedness (instantiations, number of parallel executions etc)
 - Undecidable in general
 - Often solved by restricting some source of unboundedness
- Tools to automate verification: ProVerif, Tamarin, DeepSec...