
Formal verification of security protocols

Lecture 1, 24 July 2023

COL876: SPECIAL TOPICS IN FORMAL METHODS

COURSE OUTLINE & LOGISTICS

Objective: To learn about formally modelling and verifying
cryptographic protocols, and use specialized tools for the same

Involves concepts from automata theory, algorithms, logic, and
programming languages

Ideally, you should have taken COL202 (Discrete Math) and
COL352 (Automata & ToC), or some equivalent thereof

If not, talk to me after class!

COURSE OUTLINE & LOGISTICS

Mostly following class notes, and other uploaded material

Lecture notes and any ancillary material will be uploaded after class

Office hours: by appointment only

Tentative homework/exam and evaluation policy:

At most three assignments (~40%)

In-class quizzes + class participation (~10%)

A final project presentation (~50%)

COURSE OUTLINE & LOGISTICS

Option to do the project individually or in groups of two.

Individual:

Read and present a paper to the class

Also submit a written report

A list of suitable papers will be provided, but can choose any
that is relevant to the course

COURSE OUTLINE & LOGISTICS

Option to do the project individually or in groups of two.

Group of two:

Use an automated tool to model a security protocol from an
RFC/standard, and verify at least two properties

Present your model to the class and upload code to Github

A list of suitable protocols will be provided, but can choose
any that is relevant to the course

FORMAL VERIFICATION: WHAT?

Today’s systems are ubiquitous but increasingly complex

Need absolute guarantees about behaviour; difficult to get just by software
testing

Enter formal verification!

Make an abstract mathematical model of system — ignore “irrelevant” details

Cast any desirable property as a mathematical formula

Verify that said formula holds of said model

Profit (? Hopefully!)

SECURITY PROTOCOL: WHAT?

Sequence of message exchanges to achieve some desirable goal

Built upon various cryptographic schemes used for manipulating
information with some guarantees

Cryptographic schemes can be assumed to be “perfect”

Public key crypto and digital signatures have evolved enough to give
us some basic assurances about secrecy, authenticity &c.

 So we’re going to ignore attacks on crypto: hash collisions, buffer
overflow, side channel attacks &c.

DO WE REALLY NEED VERIFICATION?

The logic underlying the protocol could itself be flawed!

Attacks due to incorrect protocol logic:

Impersonation of Trusted Platform Modules and/or owners

Breach of anonymity while using RFID e-passports

An e-voting protocol used by the government of Estonia…

EXAMPLE 0

On a public network, two people share a number m, which they
want kept secret.

Is this protocol secure? If A and B finish executing this
protocol, can a malicious intruder I get to know m?

EXAMPLE 0

The network is public; obviously should not send m in the clear

Need to ensure secrecy via crypto mechanisms like encryption

Even if “secret” is secured via crypto, if it is a constant or picked
deterministically, replay attacks are possible!

Pick a randomly generated number

ASSUMPTIONS

A and B “honest principals”: assumed to not intentionally
compromise the protocol

To honest principals, I is just any other entity on the network

They will communicate via the protocol with I, if required

If a message of the wrong format is received, or none received at
all? Up to the implementation!

EXAMPLE 1

On a public network, two people share a randomly generated value m, which
they want kept secret.

Is this protocol secure? If A and B finish executing this protocol, can a
malicious intruder I get to know m?

Perfect crypto; I can learn m from enc(m, k) only if I has the inverse of k

enc(m, k) = enc(m’, k’) !=> m = m’ and k = k’: cannot “accidentally” learn secrets

EX1: MAN IN THE MIDDLE

EXAMPLE 2

So the previous version suffered a man-in-the-middle attack

Easy fix: include the name of the sender inside the encryption.

Is this protocol secure? If A and B finish executing this protocol,
can I get to know m?

EX2: TYPE FLAW+MULTI-SESSION

– Roger Needham

“Security protocols are three-line programs
that people still manage to get wrong”

PROTOCOL VERIFICATION: HOW?

Abstract protocol into a formal model (automata, logic &c.)

Assume perfect cryptography

Specify required security guarantees as mathematical properties
over these abstract models

Prove these properties hold, preferably by automated means

SYMBOLIC MODEL: DOLEV & YAO, 1983

Split each communication into a send and a receive

I is essentially the network

Each send captured by I

Each receive assumed to come from I

A send action need not have a corresponding receive action!

DOLEV-YAO INTRUDER

Intruder I cannot break encryption, but, on the public channel, can

see any message sent on the channel

block any message from reaching the intended recipient

re-route any message to any principal

masquerade as any principal and send messages in their name

initiate new communication according to the protocol

generate messages — according to some rules

MODELLING MESSAGES

Split each communication into a send and a (potential) receive

But what about the messages sent and received?

Messages are not bitstrings

Ignore extraneous details like headers, metadata &c.

Modelled as symbolic terms from a term algebra.

MORE ABOUT MESSAGES

When can an agent/intruder send a particular message term?

When they can generate it, according to particular rules.

Will only consider “well-formed” protocols

Honest principals can always generate whatever messages
they need to send according to the protocol

Need to check correct generation only for the intruder

PROOF RULES FOR MESSAGES

Proof system for a term algebra
with pairing and asymmetric encryption

VERIFYING PROPERTIES

Many properties involve looking for a proof using these rules

Passive intruder problem: can the intruder violate some desired
property just by observing traffic on the network?

Active intruder problem: can the intruder violate some desired
property by orchestrating DY-allowable behaviours and then
observing the resulting network traffic?

VERIFYING PROPERTIES

Passive intruder problem merely checks abstract derivability

For simple systems, in PTIME

Active intruder problem needs taking into account various sources of
unboundedness (instantiations, number of parallel executions etc)

Undecidable in general

Often solved by restricting some source of unboundedness

Tools to automate verification: ProVerif, Tamarin, DeepSec…

