Lecture 2 - Propositional Logic

Vaishnavi Sundararajan

COL703/COL7203 - Logic for Computer Science

2 Logic and modelling

Propositional logic

- Induct over arbitrary recursive definitions (not just naturals/integers)
- Naturals, integers, trees, lists...

Consider S, defined as the smallest set satisfying the following:

- 0 ∈ S
- If $a \in S$, then $(a) \in S$

Prove that every element in *S* has balanced left and right parentheses.

Consider the following definition of length of strings over an alphabet Σ .

- $len(\varepsilon) = 0$
- $\operatorname{len}(sa) = 1 + \operatorname{len}(s)$, where $a \in \Sigma$, $s \in \Sigma^*$

Prove that for all strings $x, y \in \Sigma^*$, len(xy) = len(x) + len(y).

- Induct over arbitrary recursive definitions (not just naturals/integers)
- Naturals, integers, trees, lists...

Consider S, defined as the smallest set satisfying the following:

- 0 ∈ S
- If $a \in S$, then $(a) \in S$

Prove that every element in *S* has balanced left and right parentheses.

Consider the following definition of length of strings over an alphabet Σ .

- $len(\varepsilon) = 0$
- $\operatorname{len}(sa) = 1 + \operatorname{len}(s)$, where $a \in \Sigma$, $s \in \Sigma^*$

Prove that for all strings $x, y \in \Sigma^*$, len(xy) = len(x) + len(y).

Strings in Σ^* are generated by $S \rightarrow \mathcal{E} \mid S \cdot a$ (a $\epsilon \mathcal{E}$) $len(\mathcal{E}) = 0$ len(s.a) = len(s) + 1 for $a \in \mathcal{E}$, $s \in \mathcal{E}^*$. To prove: $\forall x, y \in \mathcal{Z}^*$, $\ell eu(x, y) = \ell eu(n) + \ell eu(y)$. Proof: By structural induction on y. Base case: $y = E : \operatorname{len}(x \cdot y) : \operatorname{len}(x \cdot E) = \operatorname{len}(x)$ $= \operatorname{len}(n) + 0 = \operatorname{len}(x) + \operatorname{len}(y)$ IH: For all $x \in \mathbb{Z}^* d$ all strings \mathbb{Z} recursively smaller them yo, $\operatorname{len}(x, \mathbb{Z}) = \operatorname{len}(x) + \operatorname{len}(\mathbb{Z})$. Inductive case: $y_0 = Z \cdot \alpha$ len(x, y_0) = len(x, z \cdot \alpha) = len(\alpha \cdot \alpha) + 1 = \cdot \cdot \alpha \frac{1}{2} + \len(\alpha) + \len(\alpha) + 1 = \cdot \cdot \cdot \alpha \frac{1}{2} + \len(\alpha) + \len(\alp

2 Logic and modelling

Propositional logic

Recall: Why logic?

- · Logic allows us to make sense of our world
- "What constitutes a valid proof?"
- "Is my set of statements internally consistent?"
- Valid inference and internal consistency becomes paramount when we model complex systems
- Logic allows us to verify that systems work correctly...
- ...without testing each possible execution!
- Important to know when inference is sound!

Trust Model, then verify

- A model abstracts away extraneous details
- Choice of model heavily tied to the verification context
- Same framework for model and properties we would like to verify
- Sometimes a very simple framework suffices, sometimes not!
- Navigate thin line between expressiveness and tractability of syntax
- We start with one of the simplest such: propositional logic

2 Logic and modelling

3 Propositional logic

Propositional Logic

- Every statement of interest modelled as a proposition
- What is a proposition? A statement that can be evaluated for truth or falsehood. Examples:
 - COL703 is a core course for CS5 students
 - New Delhi is the capital of India
 - Blood is gold in colour
- What is not a proposition? Questions, exclamations, doubts...
- Statements whose truth value changes based on context

Compare

- Is there a number such that doubling it and adding two gives ten?
- 2x + 5 = 17
- See you tomorrow!
- 2*4+5=17
- 8/0 = 42
- Hopefully quantum computers will become commonplace soon
- This is not a proposition

2 Logic and modelling

Propositional logic

Propositional logic: Syntax

- When using a logic, one is bound by the rules of *syntax*
- Only "grammatically-correct" statements are "allowed"
- Start with a (countable) set AP of propositional atoms
 - "Smallest" statements of interest
 - · Can build up bigger statements with these
- Combine atoms from AP using operators to form bigger propositions:
 AND (∧), OR (∨), NOT (¬), IMPLIES (¬)
- Grammar for propositional logic (PL) is as follows

$$\varphi, \psi := p \mid \neg \varphi \mid \varphi \land \psi \mid \varphi \lor \psi \mid \varphi \supset \psi$$
 where $p \in AP$

- \wedge and \vee are left-associative; read $\varphi \wedge \psi \wedge \chi$ as $(\varphi \wedge \psi) \wedge \chi$
- \supset is right-associative; read $\varphi \supset \psi \supset \chi$ as $\varphi \supset (\psi \supset \chi)$

Propositional logic: Syntax

- This grammar produces the well-formed formulas (wffs) of propositional logic
- Can construct abstract syntax trees (ASTs) for well-formed formulas