Lecture 1 - Preliminaries, Orderings, and Induction

Vaishnavi Sundararajan

COL703/COL7203 - Logic for Computer Science

What should you already know?

- Mostly stuff from Discrete Maths
- Sets: Membership, equality, set operations, properties, inductive definitions, subsets, power sets, Cartesian products...
- Functions: Total/partial functions, in/sur/bijections, composition
- Relations: Composition, properties, closures, equivalence relations
- Cardinality: Finite and infinite sets, countable/uncountable sets, diagonalization
- Proof techniques: Construction, contradiction, induction
- You will many of these even to attend today's (preliminary) lecture!

• Working with infinite sets

② Order, order!

3 Induction: New and improved

Proving statements about infinite sets

- Prove statements about finite sets by (potentially painful) case analysis
- But what about infinite sets? Say I want to prove something about N.
- Could test it for some naturals. Is this convincing?
- Suppose I set a computer to do this
- The computer runs out of memory/power at some point
- Infinitely many naturals, but we can only examine finitely many
- What if the counterexample to the claim lies outside of this subset?
- Need induction

(Weak) Mathematical induction

- Prove it for the "smallest" candidate.
- Then show that if the statement is true about one candidate, then it is also true about the "next" candidate.
- This process "runs forever" we never run out of "next" candidates
- But a uniform template for every "next" candidate allows us to claim something about all candidates.
- Somewhat like a while(true), without any of the nasty segfaults!
- One of Peano's axioms for characterizing \mathbb{N} : Let $A \subseteq \mathbb{N}$. If $0 \in A$ and for every $x \in \mathbb{N}$, if $x \in A$ implies $x + 1 \in A$, then $A = \mathbb{N}$.

Other kinds of induction?

- Variant of mathematical induction: If a statement is true about the "previous" candidate, then it is also true about the current candidate.
- Strong/Complete induction: If a statement is true about every candidate from the "smallest" through the current one, then it is also true about the "next" candidate.

• Working with infinite sets

Order, order!

3 Induction: New and improved

What "next"?

- We say "next", "previous", "smallest" etc
- How are we measuring this?
- Do I know that there is exactly one such?
- Can I still use induction if there are multiple "next"s or "smallest"s?
- First: "Smallest" according to what? Is there always a "the smallest"?

Orders

- For the naturals, we used the "less than" binary relation
- Convenient notion
 - Any two naturals linked via this (total) relation
 - Clear notion of a "next" (add one) and a "smallest" (zero)
- Antisymmetric (if m < n then n < m for any m, n)
- Transitive (if m < n and n < p, then m < p)
- But not reflexive (n < n for any n)
- A "better" relation to consider: ≤
 - This kind of relation occurs more frequently
 - More amenable to algebraic treatment
- Cycle back to < when we talk about well-foundedness

Partial orders

- Partial order: relation that is reflexive, antisymmetric and transitive
- A partial order ≤ over X defined as follows
 - $x \le x$ for every $x \in X$
 - If $x \le y$ and $y \le x$, then x = y for any $x, y \in X$
 - If $x \le y$ and $y \le z$, then $x \le z$ for any $x, y, z \in X$
- (X, \leq) is a partially-ordered set (poset)
- Partial because there might be some $x, y \in X$ s.t. $x \le y$ and $y \le x$

Examples of orders

- \leq on \mathbb{N} (total)
- Lexicographic ordering on words in a language (total)
- "Can fit" relation (with direction) on jigsaw pieces (partial)
- \subseteq on the powerset of any set X (partial)
- Ancestry relation on the set of nodes in a tree (partial)
- Substring ordering on words in a language (partial)

Properties of posets

- A poset (X, ≤) could have minimum and maximum elements
 - Minimum element a: for every $x \in X$, $a \le x$
- If a poset (X, \leq) has a minimum element, it has exactly one.
 - Suppose two elements a and a' are both minimum for (X, \leq)
 - a is minimum: $a \le a'$
 - a' is minimum: $a' \leq a$
 - By antisymmetry, a = a'
- Maximum element *b*: for every $x \in X$, $x \le b$
- If a poset (X, \leq) has a maximum element, it has exactly one.

Minimum vs minimal

- Minimal element *a* for (X, \leq) : for every $x \in X$, if $x \leq a$, then x = a.
- Maximal element b for (X, \le) : for every $x \in X$, if $b \le x$, then x = b.
- For (X, \leq) , if a is minimum, then it is also minimal
- But the converse is not necessarily true! (Why?)
- If \leq is a total order on X, then minimal implies minimum.
- Similarly for maximum vs maximal.
- It is possible for a poset to **not** have any subset of {minimum, minimal, maximum, maximal} elements.

More about posets

- $a \in X$ is said to be a lower bound of $S \subseteq X$ iff $a \le x$ for every $x \in S$
- A subset *S* might have zero, one, or multiple lower bounds
- It could also be that none of the lower bounds exist inside S
- Examples?
- A notion of a greatest lower bound
- Similar notions of a least upper bound

Well-founded sets

- Irreflexive, antisymmetric, transitive relation ≺ on a set X
- Minimal element a: No $x \in X$ such that x < a
- (*X*, ≺) is **well-founded** if every nonempty *S* ⊆ *X* has a minimal element.
- Every well-founded set has at least one minimal element (Obviously!)
- Thm: (X, <) is well-founded **iff** it has **no infinite descending chain**, i.e. $a_1 > a_2 > a_3 > ...$ (where each $a_i \in X$, and > is the inverse of <)
- (⇒) Suppose there is an infinite descending chain, then that subset has no minimal element, contradicts the well-foundedness of (X, ≺)
- (⇐) Suppose (*X*, ≺) is **not** well-founded, demonstrate a contradiction by constructing an infinite descending chain.

Working with infinite sets

② Order, order!

3 Induction: New and improved

Well-founded induction

- Let (X, \prec) be a well-founded set
- Let *P* be a statement about the elements of *X*
- Can state an induction principle for (X, <) as follows
- If we can prove the following: "For every $x \in X$, if P holds for all $y \in X$ such that y < x, then P holds for x too"
- Then P holds for every $x \in X$
- Special case: Strong mathematical induction
 - Well-ordered set (N, <)
 - All descending chains are finite (0 is the minimal element for № wrt <)
- Useful for proving properties about inductively-defined structures

Inductively-defined structures

- A nice way of building the set of natural numbers: induction
- Consider some large universe \mathbb{U} of numbers. Now consider a set $X \subseteq \mathbb{U}$ such that $0 \in X$, and if $n \in X$, then $n + 1 \in X$.
- Define N to be the smallest such set X.

Inductively-defined structures

- Correspond neatly to recursive programs
- Need a base case, and an inductive step specified via functions
- Examples: The sets of all
 - Natural numbers: $n := 0 \mid n+1$
 - **Lists***: $l := \text{Empty list} \mid \text{Append } a l$
 - **Binary trees***: $T := \text{Empty tree} \mid \text{Node } T n T$
 - Words*: $w := \varepsilon \mid a.w$
- * indicates adherence to a typing discipline
- The set of all lists over a particular type, all words over a particular alphabet etc.

Towards a generalized induction principle

- Suppose we want to show that property P holds for all $n \in \mathbb{N}$
- *P* might hold for more things in **U** as well
- Let $P' = \{x \in U \mid P(x)\}$
- Enough to show that $\mathbb{N} \subseteq P'$, i.e.
 - $0 \in P'$
 - If $n \in P'$, then $n + 1 \in P'$
- Equivalent to: P holds of O, and if P holds of n, then P holds of n+1
- But this is just mathematical induction!
- Leads us to structural induction

Structural induction

- Suppose you inductively defined a set S as the smallest subset of a larger universe U such that
 - Some (base) elements from **U** belong to **S**, and
 - If some elements belong to *S*, then the result of applying some function *f* to those elements also belongs to *S*
- How does one show that all elements of S satisfy a property P?
 - P holds for all base elements, and
 - If P holds for $\{x_1, ..., x_n\} \subseteq U$, then P holds for $f(x_1, ..., x_n)$ (where f, as above, is n-ary)
- Allows us to prove properties about more complex inductively-defined structures

Two specifications

- N was specified in Backus-Naur Form (BNF) $n := 0 \mid n + 1$
- Now define \mathbb{N} as the countable union of sets $X_0, X_1, ...$ where each X_i is the subset of \mathbb{U} which we throw in at step i.
- $X_0 = \{0\}$ and $X_{i+1} = X_i \cup \{i+1\}$ for every i > 0 $\mathbb{N} = \bigcup_{i > 0} X_i$
- Can we show that these two specifications yield the same set?
- Exercise: Show that if k is generated via the BNF, then k ∈ X_i for some i, and vice versa.