Lecture 0 - Course Policy and Introduction

Vaishnavi Sundararajan

COL703/7203 - Logic for Computer Science

Logistics

2 Actual logic!

Teaching staff

Instructor Vaishnavi Sundararajan

TAs Kushagra Gupta (cs5210592@cse.iitd.ac.in)

Kushagra Karar (csy247554@cse.iitd.ac.in)

Vikash Pandey (jcs242613@csia.iitd.ac.in)

Instructor Office Hours: 1400–1500 Mondays and Thursdays

Pages to check regularly

Course webpage: For lecture notes and other material:

https://vaishs.github.io/courses/col703-jul25/

Piazza: All discussion and Q&A will be done on Piazza. You should be enrolled to the course page on Piazza. All course

announcements will be sent out via Piazza.

Gradescope: We will use Gradescope for practicals and exam uploads.

Send an email if you have not been enrolled to Piazza. (You might need to activate your account.)

Q&A and contacting the teaching staff

- Email is only for queries of an individual nature anything technical or logistical must be posted on Piazza.
- It is especially not okay to use email to ask about logistics issues that might affect the entire class. Stick to Piazza for those concerns.
- Before posting on Piazza, check if the same question has been asked by someone else before. Do not repeat posts.
- For individual queries, do not contact the teaching staff via means other than email. Any email needs to be sent to Vikash with me in cc, with "COL703/COL7203" in the subject. Emails not following this template will not be read.
- We are but human, and sometimes it might take us up to two days to respond to a query. Be patient, and account for such delays.

Prerequisites

- Ability to write and understand rigorous formal proofs (especially those involving induction)
- Some minimal programming background; but no prior knowledge of any specific language is required
- Should have taken **at least one** of the following courses (or equivalent)
 - COL106 (Data Structures & Algorithms)
 - COL202 (Discrete Mathematical Structures)
- It is helpful to have done some course where you have had to write rigorous proofs and/or analyze abstract formal objects

References

- Will mostly follow slides/notes presented in class
- Will upload notes and supplementary material to the course webpage
- External references:
 - Introduction to Formal Logic, by Peter Smith:

```
https://www.logicmatters.net/ifl/
```

- Formal Logic: Its Scope and Limits, by Richard C. Jeffrey: https://archive.org/details/formallogicitssc0000jeff_d0z0/(also
 - available in the IIT library)
- Hyper-notes for Logic in Computer Science by Prof. S. Arun-Kumar:

```
https://www.cse.iitd.ac.in/~sak/courses/ilcs/2020-21/ilcs.pdf
```

Evaluation policy

- Practicals: 20%
 - We will learn to use some theorem provers in the practical sessions. You
 will require a laptop which can install VSCode and Rocq/Lean.
 (Installation instructions will be provided before the practicals begin.)
 - Attendance is mandatory in the practicals. For every practical slot where you are absent, you will lose 3% of the potential 20%.
- Minor: 20%
 - No re-minor will be conducted.
 - Produce appropriate documentation within one week of the minor if you miss it for a medical reason.
 - In the above case, marks for the major will be scaled up accordingly.
- Major: 40%. Will include everything covered in the course.

Evaluation policy (Contd.)

- Quizzes: 15-20%.
 - Surprise quizzes conducted in class (How many? Surprise!)
 - Absence in a quiz directly marked o.
 - No make-up quizzes will be conducted.
 - Best n-1 out of n considered.
- In-class participation, attendance etc: 0−5%.
- Best example(s) of real-world situations modelled in logic: 0-5% **Bonus**

1 Logistics

2 Actual logic!

• Logic allows us to make sense of our world

- Logic allows us to make sense of our world
- "What constitutes a valid proof?"

- Logic allows us to make sense of our world
- "What constitutes a valid proof?"
- "Is my set of statements internally consistent?"

- Logic allows us to make sense of our world
- "What constitutes a valid proof?"
- "Is my set of statements internally consistent?"
- Valid inference and internal consistency becomes paramount when we model complex systems

- Logic allows us to make sense of our world
- "What constitutes a valid proof?"
- "Is my set of statements internally consistent?"
- Valid inference and internal consistency becomes paramount when we model complex systems
- Logic allows us to **verify** that systems work correctly...

- Logic allows us to make sense of our world
- "What constitutes a valid proof?"
- "Is my set of statements internally consistent?"
- Valid inference and internal consistency becomes paramount when we model complex systems
- Logic allows us to verify that systems work correctly...
- ...without testing each possible execution!

- Logic allows us to make sense of our world
- "What constitutes a valid proof?"
- "Is my set of statements internally consistent?"
- Valid inference and internal consistency becomes paramount when we model complex systems
- Logic allows us to **verify** that systems work correctly...
- ...without testing each possible execution!
- Important to know when inference is sound!

• Vera City is populated by knights, who always tell the truth, and knaves who always lie. Alice and Bob are two inhabitants.

- Vera City is populated by knights, who always tell the truth, and knaves who always lie. Alice and Bob are two inhabitants.
- Alice says, "Bob is a knave"

- Vera City is populated by knights, who always tell the truth, and knaves who always lie. Alice and Bob are two inhabitants.
- Alice says, "Bob is a knave"
- Bob says, "Neither Alice nor I are knaves"

- Vera City is populated by knights, who always tell the truth, and knaves who always lie. Alice and Bob are two inhabitants.
- Alice says, "Bob is a knave"
- Bob says, "Neither Alice nor I are knaves"
- What are Alice and Bob?

Alice: Knight } Possible

Dob: Knave

- Vera City is populated by knights, who always tell the truth, and knaves who always lie. Alice and Bob are two inhabitants.
- Alice says, "Bob is a knave"
- Bob says, "Neither Alice nor I are knaves"
- What are Alice and Bob?

- Vera City is populated by knights, who always tell the truth, and knaves who always lie. Alice and Bob are two inhabitants.
- Alice says, "Bob is a knave"
- Bob says, "Neither Alice nor I are knaves"
- What are Alice and Bob?

I'VE DISCOVERED A WAY TO GET COMPUTER SCIENTISTS TO LISTEN TO ANY BORING STORY.

2 knights 2 knaves

• Alice says, "Bob and I are both knights or both knaves"

2 knights 2 knaves

- Alice says, "Bob and I are both knights or both knaves"
- Bob says, "Alice and I belong to the same category"

2 knights 2 knaves

- Alice says, "Bob and I are both knights or both knaves"
- Bob says, "Alice and I belong to the same category"
- What are Alice and Bob?

How do we solve these?

- Can do case analysis with a truth table
- Only Alice is a knight, only Bob is a knight, both are knights, both are knaves
- Allows us to draw contradictions/impossibilities (using some valid system of inference)
- Can rule out all but one (the correct!) case
- In some cases: can do smarter analysis than looking through the entire truth table.

• Alice says, "Bob is telling the truth."

- Alice says, "Bob is telling the truth."
- Bob says, "Han shot first."

- Alice says, "Bob is telling the truth."
- Bob says, "Han shot first."
- Carol says, "Greebo shot first."

- Alice says, "Bob is telling the truth."
- Bob says, "Han shot first."
- Carol says, "Greebo shot first."
- If only one of Alice, Bob, and Carol is a knight, is it possible to conclusively determine who shot first?

Jedi Knights and knaves

- Alice says, "Bob is telling the truth."
- Bob says, "Han shot first."
- Carol says, "Greebo shot first."
- If only one of Alice, Bob, and Carol is a knight, is it possible to conclusively determine who shot first?
- Probably not a great idea to do exhaustive case analysis here!

• A farmer with a wolf, a goat, and a cabbage must cross a river by boat.

- A farmer with a wolf, a goat, and a cabbage must cross a river by boat.
- The boat can carry only the farmer and one other entity.

- A farmer with a wolf, a goat, and a cabbage must cross a river by boat.
- The boat can carry only the farmer and one other entity.
- If left unattended together, the wolf would eat the goat, or the goat would eat the cabbage.

- A farmer with a wolf, a goat, and a cabbage must cross a river by boat.
- The boat can carry only the farmer and one other entity.
- If left unattended together, the wolf would eat the goat, or the goat would eat the cabbage.
- How can they cross the river without anyone suffering any damage?

- A farmer with a wolf, a goat, and a cabbage must cross a river by boat.
- The boat can carry only the farmer and one other entity.
- If left unattended together, the wolf would eat the goat, or the goat would eat the cabbage.
- How can they cross the river without anyone suffering any damage?

- A farmer with a wolf, a goat, and a cabbage must cross a river by boat.
- The boat can carry only the farmer and one other entity.
- If left unattended together, the wolf would eat the goat, or the goat would eat the cabbage.
- How can they cross the river without anyone suffering any damage?

• Three identical sisters: Alice, Bella, and Carol

- Three identical sisters: Alice, Bella, and Carol
- Alice and Bella always lie, but Carol always tells the truth

- Three identical sisters: Alice, Bella, and Carol
- Alice and Bella always lie, but Carol always tells the truth
- You run into one of them unexpectedly, and want to know if it is Bella

- Three identical sisters: Alice, Bella, and Carol
- Alice and Bella always lie, but Carol always tells the truth
- You run into one of them unexpectedly, and want to know if it is Bella
- You can ask a question of up to three words to find out who it is

- Three identical sisters: Alice, Bella, and Carol
- Alice and Bella always lie, but Carol always tells the truth
- You run into one of them unexpectedly, and want to know if it is Bella
- You can ask a question of up to three words to find out who it is
- What question would you ask?