COL703 - Proof exercises for system $\vdash_{\mathscr{C}}$

Vaishnavi Sundararajan

Recall the $\vdash_{\mathscr{C}}$ proof system from the notes.

- 1. Prove the expressions from the $\vdash_{\mathscr{H}}$ worksheet (for PL) in the propositional fragment of $\vdash_{\mathscr{G}}$.
- 2. Prove the following expressions in system $\vdash_{\mathscr{G}}$ (without using any context). These expressions are classical FO tautologies.

```
(a) \neg \neg \forall x. [\phi \lor \neg \phi]
```

(b)
$$\neg \forall x$$
. $[\varphi] \supset \exists x$. $[\neg \varphi]$

(c)
$$\exists x. [\neg \varphi] \supset \neg \forall x. [\varphi]$$

(d)
$$\exists x$$
. $[\varphi(x) \supset \forall y$. $[\varphi(y)]]$

(e)
$$\exists x$$
. $[\exists y$. $[\varphi(y)] \supset \varphi(x)]$

(f)
$$(\forall x. [\varphi(x)] \supset \psi) \supset \exists x. [\varphi(x) \supset \psi]$$
, where $x \notin fv(\psi)$

(g)
$$\exists x$$
. $[\exists y$. $[\varphi(x) \supset \psi(y)]] \supset \exists x$. $[\varphi(x) \supset \psi(x)]$

(h)
$$\forall x. \ [\phi \lor \neg \phi] \supset \exists x. \ [\phi] \lor \forall x. \ [\neg \phi]$$

(i)
$$\forall x$$
. $[\phi \lor \neg \phi] \land \neg \neg \exists x$. $[\phi] \supset \exists x$. $[\phi]$

(j)
$$\forall x. \ [\psi \lor \varphi(x)] \supset (\psi \lor \forall x. \ [\varphi(x)])$$
, where $x \notin fv(\psi)$

(k)
$$(\psi \lor \forall x. [\varphi(x)]) \supset \forall x. [\psi \lor \varphi(x)]$$
, where $x \notin fv(\psi)$

(l)
$$\forall x. [\neg \neg \phi] \supset \neg \neg \forall x. [\phi]$$

3. Rewrite $\neg \alpha$ as $\alpha \supset \bot$ for any α in the following expressions. Prove them in system $\vdash_{\mathscr{G}}$ with \bot (without using any context). Do not use the \neg e rule, but you can use the \bot e rule instead. These expressions are intuitionistic FO tautologies.

(a)
$$\forall x. [\varphi] \supset \exists x. [\varphi]$$

(b)
$$\neg \exists x. [\varphi] \supset \forall x. [\neg \varphi]$$

(c)
$$\forall x. [\neg \varphi] \supset \neg \exists x. [\varphi]$$

(d)
$$\forall x. [\varphi \supset \psi] \supset (\forall x. [\varphi] \supset \forall x. [\psi])$$

(e)
$$\forall x. \ [\phi \supset \psi] \supset (\exists x. \ [\phi] \supset \exists x. \ [\psi])$$

(f)
$$\forall x$$
. $[\varphi(x)] \supset \varphi(t)$

(g)
$$(\forall x. [\phi \lor \neg \phi] \land \neg \neg \forall x. [\phi]) \supset \forall x. [\phi]$$

(h)
$$\exists x. \ [\psi \land \varphi(x)] \supset (\psi \land \exists x. \ [\varphi(x)])$$
, where $x \notin fv(\psi)$

(i)
$$(\psi \land \exists x. [\varphi(x)]) \supset \exists x. [\psi \land \varphi(x)]$$
, where $x \notin fv(\psi)$

(j)
$$\neg \neg \forall x$$
. $[\phi] \supset \forall x$. $[\neg \neg \phi]$