Lecture 8 - Propositional logic: Wrap up

Vaishnavi Sundararajan

COL703 - Logic for Computer Science

Quiz

(H1)
$$\varphi \supset (\psi \supset \varphi)$$

(H2) $(\varphi \supset (\psi \supset \chi)) \supset ((\varphi \supset \psi) \supset (\varphi \supset \chi))$
(H3) $(\neg \varphi \supset \neg \psi) \supset ((\neg \varphi \supset \psi) \supset \varphi)$
 $\frac{\varphi \supset \psi \quad \varphi}{\psi} MP$

- **Theorem (Monotonicity)**: If $\Gamma \vdash_{\mathscr{H}} \varphi$ and $\Gamma \subseteq \Gamma'$, then $\Gamma' \vdash_{\mathscr{H}} \varphi$.
- **Theorem (Composing Proofs/Cut)**: If $\Gamma \vdash \alpha$ and $\Gamma, \alpha \vdash \beta$, then $\Gamma \vdash \beta$.
- **Deduction Theorem**: $\Gamma \cup \{\varphi\} \vdash_{\mathcal{H}} \chi$ iff $\Gamma \vdash_{\mathcal{H}} \varphi \supset \chi$.
- The Deduction Theorem allows us to prove things more easily than just using H1, H2, H3, and MP, so we use it as a proof rule DT.

- The Hilbert system is **complete** for propositional logic.
- Show proof of a stronger statement, by contradiction.
- Assume that $X \nvDash_{\mathcal{H}} \varphi$ for some X and φ . Then show that $X \nvDash \varphi$.
- Need to build τ such that $\tau \models \psi$ for every $\psi \in X$, but $\tau \nvDash \varphi$.
- Strategy:
 - Build a (countable) set \underline{EP} of expressions for which τ is a model
 - Expand this set as much as possible, while ensuring it does not derive $\boldsymbol{\phi}$
 - Extract τ from this set somehow; that's the required valuation!

- *EP* should be as large as possible (**maximal**) and include *X*, but not φ.
- Systematically examine each PL expression, then add it to EP or not.
- PL is countable; assume an enumeration of expressions $\varphi_0, \varphi_1, \dots$
- Examine each expression according to this sequence.
- When does an expression make it into EP?
- All of X goes into EP. φ does not.
- We should be able to construct a valuation τ s.t. $\tau \models EP$. So,
 - $\neg \psi \in EP$ iff $\psi \notin EP$
 - $\psi \supset \chi \in EP$ iff either $\psi \notin EP$ or $\chi \in EP$
- What about atomic propositions?

- We know that $X \subseteq EP$ and $\varphi \notin EP$.
- Suppose $EP \vdash \varphi$. By soundness, $EP \models \varphi$. So if $\tau \models EP$, then $\tau \models \varphi$. **Bad!**
- Throw in an arbitrary formula as long as its addition does not prove φ.
- Build a sequence of sets X_0, X_1, \dots starting from $X_0 = X$.
- At the i^{th} step, examine φ_i . Check if $X_i, \varphi_i \vdash_{\mathscr{H}} \varphi$.
- If not, add φ_i to X_i to get $X_{i+1} = X_i \cup \{\varphi_i\}$.
- Otherwise $X_{i+1} = X_i$.
- Move on to the next index i + 1, and repeat.

• $EP = \bigcup_{i \ge 0} X_i$

- If ψ omitted from *EP*, it is because $EP \cup \{\psi\} \vdash_{\mathcal{H}} \varphi$; so *EP* maximal
- EP does not derive φ
- Construct τ s.t. it assigns all atoms in <u>EP</u> to <u>T</u>, and all other atoms to <u>F</u>.
- Have to show that EP "agrees" with τ (as stated earlier).
- Have to show that $\tau \models \psi$ for all $\psi \in EP$.
- Showing these two statements concludes the proof!

An interesting fallout of our proof

- **Theorem (C1)**: $X \models \varphi$ iff $X_0 \models \varphi$ for some $X_0 \subset_{\text{fin}} X$.
- Proof: Easy if X is finite. Consider an infinite set X and an expression φ such that X ∪ {φ} ⊆ PL.
- If $X \models \varphi$, then (by strong completeness), $X \vdash_{\mathcal{H}} \varphi$.
- Since proofs are finite, $X_0 \vdash_{\mathscr{H}} \varphi$ for some $X_0 \subset_{\text{fin}} X$.
- By soundness, $X_0 \models \varphi$.
- Thus, if $X \models \varphi$, then $X_0 \models \varphi$ for some $X_0 \subset_{\text{fin}} X$.
- The other direction holds by monotonicity.

The Compactness Theorem

- The above is one way of formulating the **Compactness Theorem**.
- The more traditional form is as follows.
- Theorem (C2): A set is satisfiable iff all its finite subsets are satisfiable.
- Often used in the contrapositive form
- "If a set of expressions is unsatisfiable, then some finite subset is unsatisfiable."
- We show that C1 is equivalent to C2.

The Compactness Theorem (Proof of C2 using C1)

Theorem (C2): A set is satisfiable iff all its finite subsets are satisfiable. Proof for the (\Rightarrow) direction is easy.

- **Proof** (\Leftarrow) : Immediate if **X** is finite.
- Consider an infinite set X whose all finite subsets are satisfiable. Assume, towards a contradiction, that X is not satisfiable.
- Thus, any τ such that $\tau \models X$ will also be such that $\tau \models p \land \neg p$ for some $p \in AP$. Thus, $X \models p \land \neg p$.
- Using Theorem C1, there is an $X_0 \subset_{\text{fin}} X$ such that $X_0 \models p \land \neg p$.

This contradicts our assumption that all finite subsets of **X** are satisfiable.

The Compactness Theorem (Proof of C1 using C2)

- **Theorem (C1)**: $X \models \varphi$ iff $X_0 \models \varphi$ for some $X_0 \subset_{\text{fin}} X$.
- **Proof**: Immediate if **X** is finite.
- Consider an infinite **X** and a $\varphi \in \mathsf{PL}$ such that $X \models \varphi$.
- Then, $X \cup \{\neg \varphi\}$ is unsatisfiable.
- Thus, by Theorem C2, there is an $X_0 \subset_{\text{fin}} X$ such that $X_0 \cup \{\neg \phi\}$ is unsatisfiable.
- Thus, <mark>X₀ ⊧ φ</mark>.

- A **colouring** of a graph *G* = (*V*, *E*) is given by a function which maps vertices to colours, such that vertices along an edge get different colours.
- *G* is *k*-colourable if it has a colouring using *k* distinct colours {1, ..., *k*}.
- We can encode *k*-colourability of a graph in propositional logic
- Assume we have $p_{v,i} \in AP$ for each vertex v and $i \in \{1, ..., k\}$
- What are the statements we would like to make?
- We will have to write one PL expression for each vertex in the graph
- We will later (soon?) see a better way to do this!

- "Each vertex gets one of these k colours"
- For each $\nu \in V$, we write a PL expression α_{ν} as follows.

$$\alpha_{\nu} \coloneqq \bigvee \Big\{ p_{\nu,i} \ \big| \ 1 \leqslant i \leqslant k \Big\}$$

- "If a vertex has colour *i*, it cannot simultaneously have colour $j \neq i$ "
- Encoded as β_{ν} per vertex ν

$$\beta_{\nu} := \bigwedge \left\{ p_{\nu,i} \supset \left(\bigwedge \{ \neg p_{\nu,j} \mid 1 \leqslant j \leqslant k, j \neq i \} \right) \mid 1 \leqslant i \leqslant k \right\}$$

- "If a vertex u shares an edge with vertex v, they get different colours"
- We write an expression $\gamma_{u,v}$ for all pairs of vertices $u, v \in V$, and later restrict it to only those which share an edge.

$$\gamma_{u,\nu} \coloneqq \bigwedge \Big\{ p_{u,i} \supset \neg p_{\nu,i} \, \big| \, 1 \leqslant i \leqslant k \Big\}$$

- Let $S_G := \{ \alpha_{\nu}, \beta_{\nu} \mid \nu \in V \} \cup \{ \gamma_{u,\nu} \mid (u,\nu) \in E \}$
- **Exercise**: Show that *G* is *k*-colourable iff *S_G* is satisfiable.

- Consider an infinite G where every finite subgraph is k-colourable
- Is **G** itself **k**-colourable?
- How do we prove this?
- Naïve: Take the "union" of all **k**-colourings for all finite subgraphs
- Does not work! The same vertex might be assigned different colours as part of different subgraphs.
- It is not obvious how to patch together the different *k*-colourings for all the finite subgraphs
- Compactness to the rescue!

- Consider an infinite G where every finite subgraph is k-colourable
- Every finite subgraph G' = (W, F) of G is k-colourable
- By our earlier equivalence of colourability and satisfiability, the set

 $S_{G'} := \left\{ \alpha_{\nu}, \beta_{\nu} \mid \nu \in W \right\} \cup \left\{ \gamma_{u,\nu} \mid (u,\nu) \in F \right\} \text{ is satisfiable.}$

- Every finite subset of S_G is a subset of $S_{G'}$ for some finite subgraph G'
 - Why a subset and not **equal** to S_{G'} for some G'?
 - One could take arbitrary finite subsets of S_G
 - They might not contain all the right α_{ν} , β_{ν} , and γ_{ν} to be equal to some $S_{G'}$.
- So every finite subset of S_G is satisfiable.
- By the Compactness Theorem (C2, \leftarrow), S_G itself is satisfiable.
- So G is k-colourable.

Other applications of compactness

- Topology: Equivalent statement to C1 and C2 saying that a particular kind of topology is compact
- Some proofs of the Compactness Theorem closely follow proofs of related statements about compact sets in topology
- Not isolated to fields that use the word "compact"
- Orderings: Can use the Compactness Theorem to show that every partially ordered set may be totally ordered
- **Exercise**: Prove the above statement.

Propositional logic: Wrap up

- Each statement about the world a proposition
- Atomic propositions + connectives ∧, ∨, ¬, ⊃
- Each proposition has an associated truth value
- Invalidity shown via resolution algorithm
- Saw the Hilbert axiomatization system ${\mathcal H}$ for PL
- Hard to do proofs directly in \mathcal{H} ; use Deduction Theorem
- Proved Soundness and Completeness for ${\mathcal H}$
- Proof of Completeness gave us a useful corollary of Compactness
- What next? More expressive logics!