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CNF: Deleting “unnecessary” clauses

• Wewould like to show that {φ0, … ,φn} ⊧ ψ

• Needs us to show that (⋀0⩽i⩽n φi) ∧ ¬ψ is unsatisfiable

• Convert (⋀0⩽i⩽n φi) ∧ ¬ψ into CNF

• This yields a set of clauses; each clause a set of literals

• Systematically delete “unnecessary” clauses from this set of clauses

• If we are left with {∅} at the end, the expression is unsatisfiable;
therefore ψ is a logical consequence of {φ0, … ,φn}

• Note: {∅} is not satisfiable, but {} is vacuously satisfiable! Pay
attention to what set you get.
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How to delete “unnecessary” clauses

• Consider a CNF expression φwhich is a set of clauses δ1, … , δn
• If δi ⊆ δj for some 1 ⩽ i, j ⩽ n, delete δj
• If {p, ¬p} ⊆ δi for p ∊ AP and some 1 ⩽ i ⩽ n, delete δi
• Call a CNF expression “clean” if no further deletion can be performed

• Theorem: Any CNF expression φ is logically equivalent to its clean
version φ∗

• Proof idea: A clause containing {p, ¬p} as a subset evaluates to T
under any valuation. By Absorption, a clause in a CNF expression is
logically equivalent to its subset.
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Propositional resolution

• For a clean set φ∗ and p ∊ AP, define

Δp = {δ ∊ φ∗ ∣ p ∊ δ} and Δp = {δ′ ∊ φ∗ ∣ ¬p ∊ δ′}

• Since φ∗ is clean, Δp ∩ Δp = ∅ for any p ∊ AP
• We resolve a clean set φ∗ of clauses by

• Removing both Δp and Δp from φ∗,
• removing p and¬p from each pair δ, δ′ such that δ ∊ Δp and δ′ ∊ Δp, and
• adding the resultant clause back to φ∗

resolve(φ∗, p) ≜ (φ∗ ∖ (Δp ∪ Δp))

∪ �(δ ∪ δ′) ∖ {p, ¬p} � δ ∊ Δp, δ′ ∊ Δp�
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About resolve

Theorem: Suppose δ1 and δ2 are clauses such that p ∊ (δ1 ∖ δ2) and
¬p ∊ (δ2 ∖ δ1) for some p ∊ AP. If a valuation satisfies δ1 and δ2, then it
satisfies δ = (δ1 ∪ δ2) ∖ {p, ¬p}.

Proof: Let δ1 = ℓ11 ∨ ℓ12 ∨ …ℓ1r ∨ p and δ2 = ℓ21 ∨ ℓ22 ∨ …ℓ2s ∨ ¬p
Suppose there is a valuation τ that satisfies δ1 and δ2.
Any valuation will make exactly one of p or¬p true, not both.
So at least one of r or s is greater than 0, and at least one of {ℓ1i, ℓ2j} for some
i and j is made true by τ. This literal is retained in δ, so τ satisfies δ also.
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About resolve

Theorem: Suppose δ1 and δ2 are such that p ∊ (δ1 ∖ δ2) and¬p ∊ (δ2 ∖ δ1)
for some p ∊ AP. If δ = (δ1 ∪ δ2) ∖ {p, ¬p} is satisfiable, then so are δ1 and δ2.

Proof: Let δ1 = ℓ11 ∨ ℓ12 ∨ …ℓ1r ∨ p and δ2 = ℓ21 ∨ ℓ22 ∨ …ℓ2s ∨ ¬p.
Suppose δ = ℓ1 ∨ ℓ2 ∨…ℓn is satisfied by τ. Thus, δ is not empty (why?), and
ℓi ∉ {p, ¬p} for every i. So τ does not enforce any valuation on p. The
following possibilities arise.

• δ contains an ℓ1i and an ℓ2j for some i, j. In that case, τ satisfies δ1 and δ2
• δ contains no ℓ1i but contains an ℓ2j. Set τ′(p) to T, preserve the
behaviour of τ on others. δ1 is satisfied by τ′ (since it makes p true) and
δ2 is satisfied (since it makes ℓ2j true).

• δ contains an ℓ1i but contains no ℓ2j. Similar to above, set τ′(p) to F,
preserve the behaviour of τ on others.
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Resolution: Algorithm

• Input: A clean set Δ of clauses

• Loop while ∅ ∉ Δ and there is at least one pair of clauses δ1 and δ2
which contain p and¬p. If not, return Δ.

• In the loop body,
• Compute Δ′ = resolve(Δ, p)
• Clean Δ′ by deleting unnecessary clauses
• Set Δ to be the clean version of Δ′

• The input expression is unsat iff ∅ is in the set of clauses under
examination
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Resolution: Algorithm analysis

• Theorem (Termination): Given a clean set Δ as input, the algorithm
terminates and returns a clean set.

• If Δ already contains ∅, the algorithm terminates immediately
• Otherwise, it might be the case that each atom and its negated form
present in some pair of clauses

• Each step eliminates one such pair.
• Each clause only contains one occurrence (positive or negative) of each
propositional atom

• Terminates in at most |atoms(Δ)| steps.
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Resolution: Example

• Is r a logical consequence of Γ = {p ∨ q, p ⊃ r, q ⊃ r}?

• First, we convert each expression in Γ into CNF

• Γ = {p ∨ q, ¬p ∨ r, ¬q ∨ r}

• CNF set of clauses is Δ = {{p, q}, {¬p, r}, {¬q, r}, {¬r}}

• This set is clean, so we can feed it to the algorithm as input

• δ1 and δ2 contain p ∊ AP and¬p respectively

• Δ′ = {{q, r}, {¬q, r}, {¬r}} is clean
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Resolution: Example

• Is r a logical consequence of Γ = {p ∨ q, p ⊃ r, q ⊃ r}?

• CNF set of clauses is Δ = {{p, q}, {¬p, r}, {¬q, r}, {¬r}}

• After eliminating p and¬p, we get Δ′ = {{q, r}, {¬q, r}, {¬r}}

• δ′1 and δ′2 contain q ∊ AP and¬q respectively

• Δ″ = {{r}, {¬r}}

• Similarly eliminate r and¬r to get Δ‴ = {∅}

• Algorithm terminates here, since ∅ ∊ Δ‴

• Δ is unsat, so Γ ⊧ r

Vaishnavi COL703 - Lecture 5 August 12, 2024 10 / 18



Resolution: Example

Is r a logical consequence of Γ = {(p ∨ q) ∨ ¬r, p ⊃ r, q ⊃ r}?
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Resolution: Example

Is (p ∧ q) ∨ s a logical consequence of
Γ = {(p ∨ q) ∨ ¬r, p ⊃ q, p ⊃ ¬r, q ⊃ s, s ⊃ p, s ⊃ r}?
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Resolution: Algorithm analysis

• Theorem (Soundness): If the algorithm returns {∅}, Δ is unsat
• Often easier to prove this as each step of the algorithm being sound
• If Δ′ is the clean set obtained after one iteration of the algorithm on Δ,
if Δ′ is unsat, then Δ is unsat.

• Proof sketch: Suppose towards a contradiction there is some
valuation τ that makes Δ true.
Use the first theorem about resolve, which ensures that satisfiability is
preserved. Any CNF expression is logically equivalent to its clean
version, so Δ′ is also satisfied by τ.
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Resolution: Algorithm analysis

• Theorem (Completeness): If Δ is unsat, the algorithm returns {∅}
• Needs termination; already shown
• Once again, can prove for each step
• If Δ′ is the clean set obtained after one iteration of the algorithm on Δ,
if Δ is unsat, then Δ′ is also unsat.

• Proof idea: Prove by contradiction. Use the second theorem about
resolve, and that a set is logically equivalent to its clean version.
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Unit resolution

• Can we pick the eliminated proposition “more intelligently”?

• Unit resolution: Prefer a clause that only contains one literal
• Suppose I pick two clauses δ1 = {ℓ} and δ2 = {ℓ1, ¬ℓ, ℓ2, ℓ3}

• The resolve step creates a clause of the form {ℓ1, ℓ2, ℓ3}

• Throw away δ1 entirely, and reduces the size of δ2 by one

• If multiple clauses contain¬ℓ, all their sizes reduce by one

• Exercise: Howmany steps does the algorithm take to terminate if the
unit resolution strategy suffices to yield a result?

Vaishnavi COL703 - Lecture 5 August 12, 2024 15 / 18



Falsum

• Is (¬q ∨ r) ∧ ¬r a logical consequence of Γ = {p, ¬p}?

• Needs no relationship between p and the consequent formula!

• Anything is a logical consequence of a contradiction!

• Introduce a new wff ⊥; always evaluates to F

• Grammar for propositional logic (PL) is now as follows
φ,ψ ∶= p ∣ ⊥ ∣ ¬φ ∣ φ ∧ ψ ∣ φ ∨ ψ where p ∊ AP

• For any PLwff φ, φ ∧ ¬φ ⇔ ⊥

• Exercise: Show that¬φ ⇔ φ ⊃ ⊥
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Resolution: Bigger picture

• “If I see p and its negation, I throw both away”

• Does not matter what truth value is assigned to p
• All manipulation happens at the level of syntax
• Even though we are checking for logical consequence/validity

• Can write a proof rule to capture resolve
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Proof rules

ℓ11 ∨ ℓ12 ∨ … ∨ ℓ1m ∨ p ℓ21 ∨ ℓ22 ∨ … ∨ ℓ2n ∨ ¬p
res

ℓ11 ∨ ℓ12 ∨ … ∨ ℓ1m ∨ ℓ21 ∨ ℓ22 ∨ … ∨ ℓ2n

• The horizontal line indicates inference

• The name of the inference rule is given next to the line

• Every expression above the line is called a premise
• The expression below the line is called the conclusion
• “If all the premises hold, then the conclusion holds”

• Each ℓij and p a variable; can substitute any literal and any atom

• Cannot change the “shape” of expressions though
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