Lecture 5 - Resolution

Vaishnavi Sundararajan

COL703 - Logic for Computer Science

CNF: Deleting "unnecessary" clauses

- We would like to show that $\{\varphi_0, \dots, \varphi_n\} \models \psi$
- Needs us to show that $(\bigwedge_{0 \leq i \leq n} \varphi_i) \land \neg \psi$ is unsatisfiable
- Convert $(\bigwedge_{0 \leq i \leq n} \varphi_i) \land \neg \psi$ into CNF
- This yields a set of clauses; each clause a set of literals
- Systematically delete "unnecessary" clauses from this set of clauses
- If we are left with {Ø} at the end, the expression is unsatisfiable; therefore ψ is a logical consequence of {φ₀, ..., φ_n}
- Note: {Ø} is not satisfiable, but {} is vacuously satisfiable! Pay attention to what set you get.

How to delete "unnecessary" clauses

- Consider a CNF expression φ which is a set of clauses $\delta_1, \dots, \delta_n$
- If $\delta_i \subseteq \delta_j$ for some $1 \leq i, j \leq n$, delete δ_j
- If $\{p, \neg p\} \subseteq \delta_i$ for $p \in AP$ and some $1 \leq i \leq n$, delete δ_i
- Call a CNF expression "clean" if no further deletion can be performed
- **Theorem**: Any CNF expression ϕ is logically equivalent to its clean version ϕ^*
- Proof idea: A clause containing {p, ¬p} as a subset evaluates to T under any valuation. By Absorption, a clause in a CNF expression is logically equivalent to its subset.

Propositional resolution

• For a clean set φ^* and $p \in AP$, define

 $\Delta_p = \{\delta \in \varphi^* \mid p \in \delta\} \text{ and } \overline{\Delta}_p = \{\delta' \in \varphi^* \mid \neg p \in \delta'\}$

- Since φ^* is clean, $\Delta_p \cap \overline{\Delta}_p = \emptyset$ for any $p \in AP$
- We resolve a clean set φ^{*} of clauses by
 - Removing both Δ_p and $\overline{\Delta}_p$ from φ^* ,
 - removing *p* and $\neg p$ from each pair δ, δ' such that $\delta \in \Delta_p$ and $\delta' \in \overline{\Delta}_p$, and
 - adding the resultant clause back to ϕ^{\ast}

resolve $(\varphi^*, p) \triangleq (\varphi^* \setminus (\Delta_p \cup \overline{\Delta}_p))$ $\cup \left\{ (\delta \cup \delta') \setminus \{p, \neg p\} \mid \delta \in \Delta_p, \ \delta' \in \overline{\Delta}_p \right\}$

About resolve

Theorem: Suppose δ_1 and δ_2 are clauses such that $p \in (\delta_1 \setminus \delta_2)$ and $\neg p \in (\delta_2 \setminus \delta_1)$ for some $p \in AP$. If a valuation satisfies δ_1 and δ_2 , then it satisfies $\delta = (\delta_1 \cup \delta_2) \setminus \{p, \neg p\}$.

Proof: Let $\delta_1 = \ell_{11} \vee \ell_{12} \vee \dots \ell_{1r} \vee p$ and $\delta_2 = \ell_{21} \vee \ell_{22} \vee \dots \ell_{2s} \vee \neg p$ Suppose there is a valuation τ that satisfies δ_1 and δ_2 . Any valuation will make exactly one of p or $\neg p$ true, not both. So at least one of r or s is greater than 0, and at least one of $\{\ell_{1i}, \ell_{2j}\}$ for some i and j is made true by τ . This literal is retained in δ , so τ satisfies δ also.

About resolve

Theorem: Suppose δ_1 and δ_2 are such that $p \in (\delta_1 \setminus \delta_2)$ and $\neg p \in (\delta_2 \setminus \delta_1)$ for some $p \in AP$. If $\delta = (\delta_1 \cup \delta_2) \setminus \{p, \neg p\}$ is satisfiable, then so are δ_1 and δ_2 .

Proof: Let $\delta_1 = \ell_{11} \vee \ell_{12} \vee ... \ell_{1r} \vee p$ and $\delta_2 = \ell_{21} \vee \ell_{22} \vee ... \ell_{2s} \vee \neg p$. Suppose $\delta = \ell_1 \vee \ell_2 \vee ... \ell_n$ is satisfied by τ . Thus, δ is not empty (**why?**), and $\ell_i \notin \{p, \neg p\}$ for every i. So τ does not enforce any valuation on p. The following possibilities arise.

- δ contains an ℓ_{1i} and an ℓ_{2j} for some *i*, *j*. In that case, τ satisfies δ_1 and δ_2
- δ contains no ℓ_{1i} but contains an ℓ_{2j}. Set τ'(p) to T, preserve the behaviour of τ on others. δ₁ is satisfied by τ' (since it makes p true) and δ₂ is satisfied (since it makes ℓ_{2j} true).
- δ contains an ℓ_{1i} but contains no ℓ_{2j} . Similar to above, set $\tau'(p)$ to *F*, preserve the behaviour of τ on others.

Resolution: Algorithm

- Input: A clean set Δ of clauses
- Loop while Ø ∉ Δ and there is at least one pair of clauses δ₁ and δ₂ which contain *p* and ¬*p*. If not, return Δ.
- In the loop body,
 - Compute $\Delta' = \operatorname{resolve}(\Delta, p)$
 - Clean Δ' by deleting unnecessary clauses
 - Set Δ to be the clean version of Δ'
- The input expression is unsat iff ∅ is in the set of clauses under examination

Resolution: Algorithm analysis

- **Theorem (Termination)**: Given a clean set △ as input, the algorithm terminates and returns a clean set.
 - If Δ already contains \emptyset , the algorithm terminates immediately
 - Otherwise, it might be the case that each atom and its negated form present in some pair of clauses
 - Each step eliminates one such pair.
 - Each clause only contains one occurrence (positive or negative) of each propositional atom
 - Terminates in at most $|atoms(\Delta)|$ steps.

• Is r a logical consequence of $\Gamma = \{p \lor q, p \supset r, q \supset r\}$?

- Is **r** a logical consequence of $\Gamma = \{p \lor q, p \supset r, q \supset r\}$?
- First, we convert each expression in Γ into CNF

- Is **r** a logical consequence of $\Gamma = \{p \lor q, p \supset r, q \supset r\}$?
- First, we convert each expression in Γ into CNF
- $\Gamma = \{ p \lor q, \neg p \lor r, \neg q \lor r \}$

- Is r a logical consequence of $\Gamma = \{p \lor q, p \supset r, q \supset r\}$?
- First, we convert each expression in Γ into CNF
- $\Gamma = \{ p \lor q, \neg p \lor r, \neg q \lor r \}$
- CNF set of clauses is $\Delta = \{\{p, q\}, \{\neg p, r\}, \{\neg q, r\}, \{\neg r\}\}$

- Is *r* a logical consequence of $\Gamma = \{p \lor q, p \supset r, q \supset r\}$?
- First, we convert each expression in Γ into CNF
- $\Gamma = \{ p \lor q, \neg p \lor r, \neg q \lor r \}$
- CNF set of clauses is $\Delta = \{\{p,q\}, \{\neg p,r\}, \{\neg q,r\}, \{\neg r\}\}$
- This set is clean, so we can feed it to the algorithm as input

- Is *r* a logical consequence of $\Gamma = \{p \lor q, p \supset r, q \supset r\}$?
- First, we convert each expression in Γ into CNF
- $\Gamma = \{ p \lor q, \neg p \lor r, \neg q \lor r \}$
- CNF set of clauses is $\Delta = \{\{p,q\}, \{\neg p,r\}, \{\neg q,r\}, \{\neg r\}\}$
- This set is clean, so we can feed it to the algorithm as input
- δ_1 and δ_2 contain $p \in AP$ and $\neg p$ respectively

- Is *r* a logical consequence of $\Gamma = \{p \lor q, p \supset r, q \supset r\}$?
- First, we convert each expression in Γ into CNF
- $\Gamma = \{ p \lor q, \neg p \lor r, \neg q \lor r \}$
- CNF set of clauses is $\Delta = \{\{p, q\}, \{\neg p, r\}, \{\neg q, r\}, \{\neg r\}\}$
- This set is clean, so we can feed it to the algorithm as input
- δ_1 and δ_2 contain $p \in AP$ and $\neg p$ respectively
- $\Delta' = \{\{q, r\}, \{\neg q, r\}, \{\neg r\}\}$ is clean

- Is **r** a logical consequence of $\Gamma = \{p \lor q, p \supset r, q \supset r\}$?
- CNF set of clauses is $\Delta = \{\{p,q\}, \{\neg p,r\}, \{\neg q,r\}, \{\neg r\}\}$
- After eliminating *p* and $\neg p$, we get $\Delta' = \{\{q, r\}, \{\neg q, r\}, \{\neg r\}\}$
- δ'_1 and δ'_2 contain $q \in AP$ and $\neg q$ respectively
- $\Delta'' = \{\{r\}, \{\neg r\}\}$
- Similarly eliminate **r** and \neg **r** to get $\Delta''' = \{\emptyset\}$
- Algorithm terminates here, since $\emptyset \in \Delta'''$
- ∆ is unsat, so Γ ⊧ r

Is *r* a logical consequence of $\Gamma = \{(p \lor q) \lor \neg r, p \supset r, q \supset r\}$?

Is $(p \land q) \lor s$ a logical consequence of $\Gamma = \{(p \lor q) \lor \neg r, p \supset q, p \supset \neg r, q \supset s, s \supset p, s \supset r\}?$

Resolution: Algorithm analysis

- **Theorem (Soundness)**: If the algorithm returns $\{\emptyset\}$, Δ is unsat
 - Often easier to prove this as each step of the algorithm being sound
 - If ∆' is the clean set obtained after one iteration of the algorithm on ∆, if ∆' is unsat, then ∆ is unsat.
- Proof sketch: Suppose towards a contradiction there is some valuation τ that makes Δ true.
 Use the first theorem about resolve, which ensures that satisfiability is preserved. Any CNF expression is logically equivalent to its clean version, so Δ' is also satisfied by τ.

Resolution: Algorithm analysis

- **Theorem (Completeness)**: If △ is unsat, the algorithm returns {Ø}
 - Needs termination; already shown
 - Once again, can prove for each step
 - If Δ' is the clean set obtained after one iteration of the algorithm on Δ, if Δ is unsat, then Δ' is also unsat.
- **Proof idea**: Prove by contradiction. Use the second theorem about resolve, and that a set is logically equivalent to its clean version.

Unit resolution

- Can we pick the eliminated proposition "more intelligently"?
- Unit resolution: Prefer a clause that only contains one literal
- Suppose I pick two clauses $\delta_1 = \{\ell\}$ and $\delta_2 = \{\ell_1, \neg \ell, \ell_2, \ell_3\}$
- The resolve step creates a clause of the form $\{\ell_1, \ell_2, \ell_3\}$
- Throw away δ_1 entirely, and reduces the size of δ_2 by one
- If multiple clauses contain $\neg \ell$, all their sizes reduce by one
- **Exercise**: How many steps does the algorithm take to terminate if the unit resolution strategy suffices to yield a result?

Falsum

- Is $(\neg q \lor r) \land \neg r$ a logical consequence of $\Gamma = \{p, \neg p\}$?
- Needs no relationship between *p* and the consequent formula!
- Anything is a logical consequence of a contradiction!
- Introduce a new wff \perp ; always evaluates to *F*
- Grammar for propositional logic (PL) is now as follows $\varphi, \psi := p \mid \bot \mid \neg \varphi \mid \varphi \land \psi \mid \varphi \lor \psi \quad \text{where } p \in AP$
- For any PL wff ϕ , $\phi \land \neg \phi \Leftrightarrow \bot$
- **Exercise**: Show that $\neg \phi \Leftrightarrow \phi \supset \bot$

Resolution: Bigger picture

- "If I see **p** and its negation, I throw both away"
- Does not matter what truth value is assigned to p
- All manipulation happens at the level of **syntax**
- Even though we are checking for logical consequence/validity
- Can write a **proof rule** to capture resolve

Proof rules

 $\frac{\ell_{11} \vee \ell_{12} \vee ... \vee \ell_{1m} \vee p \qquad \ell_{21} \vee \ell_{22} \vee ... \vee \ell_{2n} \vee \neg p}{\ell_{11} \vee \ell_{12} \vee ... \vee \ell_{1m} \vee \ell_{21} \vee \ell_{22} \vee ... \vee \ell_{2n}}$ res

- The horizontal line indicates inference
- The name of the inference rule is given next to the line
- Every expression above the line is called a premise
- The expression below the line is called the **conclusion**
- "If all the premises hold, then the conclusion holds"
- Each ℓ_{ij} and p a variable; can substitute any literal and any atom
- Cannot change the "shape" of expressions though