
Lecture 4 -More Propositional Logic

Vaishnavi Sundararajan

COL703 - Logic for Computer Science

Vaishnavi COL703 - Lecture 4 August 8, 2024 1 / 20



Logical consequence

• What does it mean for a valuation τ to be a model of a formula φ?

• τmakes some atomic propositions true, and also makes φ true

• A proposition φ is called a logical consequence of a set Γ of
propositions if any valuation that is a model for Γ is also a model for φ

• Slightly overload notation to denote this also by Γ ⊧ φ (even though Γ
can contain non-atomic formulas)

• For an empty Γ, logical consequence is nothing but validity

Vaishnavi COL703 - Lecture 4 August 8, 2024 2 / 20



More on logical consequence

Theorem(s): For any finite set Γ = {φi ∣ 0 ⩽ i ⩽ n} of propositions and any
proposition ψ, the following are true.

Γ ⊧ ψ iff � �

0⩽i⩽n

φi� ⊃ ψ is valid

Γ ⊧ ψ iff φ0 ⊃ (φ1 ⊃ (… (φn ⊃ ψ)…)) is valid

Γ ⊧ ψ iff � �

0⩽i⩽n

φi� ∧ ¬ψ is unsatisfiable

Vaishnavi COL703 - Lecture 4 August 8, 2024 3 / 20



Logical consequence

Theorem: Γ ⊧ ψ iff � �

0⩽i⩽n

φi� ⊃ ψ is valid

Proof:
Γ ⊧ ψ iff any τ that is a model for Γ is also a model for ψ.
(iff) For every τ, if ⟦φi⟧τ = T for every 0 ⩽ i ⩽ n, then ⟦ψ⟧τ = T.
(iff) For every τ, if ⟦⋀0⩽i⩽n φi⟧τ = T, then ⟦ψ⟧τ = T.
(iff) For every τ, ⟦�⋀0⩽i⩽n φi� ⊃ ψ⟧τ = T.
(iff) �⋀0⩽i⩽n φi� ⊃ ψ is valid. �

Exercise: Prove the other two theorems on the previous slide.

Vaishnavi COL703 - Lecture 4 August 8, 2024 4 / 20



Logical equivalence

• We say that φ logically implies ψ iff φ ⊃ ψ is valid

• We say that φ is logically equivalent to ψ iff φ logically implies ψ and
vice versa

• We denote this by φ ⇔ ψ

• For example, φ ∧ ψ ⇔ ψ ∧ φ, since ∧ is commutative

• Have to show that each direction of this identity is a validity

• Can write many such identities

Vaishnavi COL703 - Lecture 4 August 8, 2024 5 / 20



Propositional identities

• Negation: ¬¬φ ⇔ φ

• Zero: φ ∧ F⇔ F and φ ∨ T⇔ T

• Identity: φ ∧ T⇔ φ and
φ ∨ F⇔ φ

• Implication: φ ⊃ ψ ⇔ ¬φ ∨ ψ

• Inversion: ¬F⇔ T and¬T⇔ F

• Simplification: φ ∨ ¬φ ⇔ T and
φ ∧ ¬φ ⇔ F

For ∘ ∊ {∧, ∨}, the following hold:

• Commutativity: φ ∘ ψ ⇔ ψ ∘ φ • Idempotence: φ ∘ φ ⇔ φ
• Associativity: φ ∘ (ψ ∘ ξ) ⇔ (φ ∘ ψ) ∘ ξ

• Distributivity: φ ∘ (ψ ∗ ξ) ⇔ (φ ∘ ψ) ∗ (φ ∘ ξ) (where ∗ is the dual of ∘)

• DeMorgan’s laws: ¬(φ ∘ ψ) ⇔ (¬φ) ∗ (¬ψ)

• Absorption: φ ∘ (φ ∗ ψ) ⇔ φ

Vaishnavi COL703 - Lecture 4 August 8, 2024 6 / 20



Digression: Functional completeness

• Howmany functions are there on a countable set of atoms?

• Can one express each such function as an expression in some logic?

• How “big” a language do I need? Howmany distinct operators?

• In general, infinitely many!

• Considerℕwith addition, subtraction, multiplication, division

• Can one express exponentiation with these?

• But for the set {T, F}, Boolean identities come to the rescue!

Vaishnavi COL703 - Lecture 4 August 8, 2024 7 / 20



Functional completeness

• Given any Boolean operator of any arity, it is possible to define a
logically equivalent operator in propositional logic

• PL is functionally complete if any Boolean function can be
represented as an expression in PL

• Wewill often instead refer to the set of operators involved in the
language as being functionally complete

• In fact, we do not even need⊃

• Theorem: {¬, ∧, ∨} is functionally complete

Vaishnavi COL703 - Lecture 4 August 8, 2024 8 / 20



{¬, ∧, ∨} is functionally complete

• n-ary Boolean function fwith inputs a1 through an and truth value b.
m = 2n − 1 rows in truth table. Denote the value of ai in row r by ari.

Row a1 … an b
0 F … F b0
⋮ ⋮ ⋮ ⋮ ⋮

m T … T bm

Fix distinct atoms p1, … , pn ⊆ AP. Define:

pmap(r, i) = �
pi, if ari = T

¬pi, if ari = F

Equivalent expression(s):

�

0⩽r⩽m

��

1⩽i⩽n

pmap(r, i) � br = T�

�

0⩽r⩽m

��

1⩽i⩽n

¬pmap(r, i) � br = F�

Vaishnavi COL703 - Lecture 4 August 8, 2024 9 / 20



Functional completeness

• Empty disjunction is equivalent to F

• Empty conjunction is equivalent to T

• Exercise: Prove that {∧, ¬} and {∨, ¬} are functionally complete
• Exercise: Prove that {∧, ∨} is not functionally complete

Vaishnavi COL703 - Lecture 4 August 8, 2024 10 / 20



Normal Forms

• It is useful to have a notion of a “general shape” for any expression

• Think of the general expression we just created, given any operator

• Disjunction over conjunctions; each conjunct an atom or its negation

• Various such “general shapes” are possible

• A normal form is a “general shape” such that any expression has a
logical equivalent of that particular shape

Vaishnavi COL703 - Lecture 4 August 8, 2024 11 / 20



Negation Normal Form

• A literal is an atom (positive literal) or its negation (negative literal)

• Set ℒ of literals ℒ = AP ∪ {¬p ∣ p ∊ AP}

• A formula in negation normal form (NNF) has the grammar
φ,ψ ∶= ℓ ∊ ℒ ∣ φ ∧ ψ ∣ φ ∨ ψ

• An expression in NNF has negations pushed to the “innermost” level

• Theorem: Every expression in PL is logically equivalent to one in NNF
• Proof sketch: Consider expressions over the functionally complete set
{∧, ∨, ¬}. Remove double negations and push negations inside using de
Morgan’s laws wherever possible.

Vaishnavi COL703 - Lecture 4 August 8, 2024 12 / 20



Conjunctive & Disjunctive Normal Forms

• An expression in conjunctive normal form (CNF) is of the form
δ1 ∧ δ2 ∧ … ∧ δn

• Each δi is called a clause
• For CNF: each δi itself has the shape ℓi1 ∨ ℓi2 ∨ … ∨ ℓimi (each ℓij ∊ ℒ)

• An expression in disjunctive normal form (DNF) is of the form
δ1 ∨ δ2 ∨ … ∨ δn

where each δi has the shape ℓi1 ∧ ℓi2 ∧ … ∧ ℓimi (each ℓij ∊ ℒ)

• Theorem: Every expression in PL is logically equivalent to one in CNF
• Theorem: Every expression in PL is logically equivalent to one in DNF
• Exercise(s): Prove the above two theorems

Vaishnavi COL703 - Lecture 4 August 8, 2024 13 / 20



Satisfiability/Validity Again

• Checking for satisfiability requires us to find a model

• Checking for (in)validity requires us to find a falsifying valuation

• We set up logical consequence/equivalence to simplify this process

• Easier for some normal forms than for others!

• Falsifying CNF expressions is easy

Vaishnavi COL703 - Lecture 4 August 8, 2024 14 / 20



Falsifying CNF expressions

• A CNF expression looks like δ1 ∧ δ2 ∧ … ∧ δn
• Each δi of the form ℓi1 ∨ ℓi2 ∨ … ∨ ℓimi

• What does it mean for a CNF expression to be made false under some
valuation?

• At least one clause must be made false

• Suppose p ∊ AP and¬p both occur as literals in a clause δi
• Can δi be made false under any valuation?

• Theorem: δ1 ∧ δ2 ∧ … ∧ δn can be falsified iff there is some δi which
does not contain both a propositional atom and its negation as literals.

Vaishnavi COL703 - Lecture 4 August 8, 2024 15 / 20



Satisfiability/Validity Again

• Checking for satisfiability requires us to find a model

• Checking for (in)validity requires us to find a falsifying valuation

• We set up logical consequence/equivalence to simplify this process

• Easier for some normal forms than for others!

• Falsifying CNF expressions is easy
• Satisfying DNF expressions is easy

Vaishnavi COL703 - Lecture 4 August 8, 2024 16 / 20



Satisfying DNF expressions

• A DNF expression looks like δ1 ∨ δ2 ∨ … ∨ δn
• Each δi of the form ℓi1 ∧ ℓi2 ∧ … ∧ ℓimi

• What does it mean for a DNF expression to be made true under some
valuation?

• At least one clause must be true

• Exercise: State and prove the corresponding theorem (dual of CNF)

Vaishnavi COL703 - Lecture 4 August 8, 2024 17 / 20



Validity

• Easy to check falsification of CNF expressions

• Recall theorems about logical consequence from earlier

• First two reduce it to checking validity of an “implies” expression

• Converting that to CNF is complicated

• Use the third theorem.

{φ0, … ,φn} ⊧ ψ iff � �

0⩽i⩽n

φi� ∧ ¬ψ is unsatisfiable

• Convert RHS expression to CNF as follows:
• Convert each φi and¬ψ to CNF
• Throw away unnecessary duplicates and put back together using ∧s

Vaishnavi COL703 - Lecture 4 August 8, 2024 18 / 20



CNF: Literals and clauses

• A CNF expression φ looks like δ1 ∧ δ2 ∧ … ∧ δn
• Think of each δi as a set of literals �ℓi1, ℓi2, … , ℓimi�

• Think of φ as a set of clauses, i.e. a set of sets of literals
• The empty set of clauses is equivalent to T

• �⋀1⩽i⩽n δi� is equivalent to �⋀1⩽i⩽n δi� ∧ T (by Identity)
• So if n = 0, the conjunction is just T

• Similarly, the empty set of literals is equivalent to F
• If δi contains p ∊ AP and¬p, it is equivalent to T

• If δ ⊆ δ′ for δ and δ′, then {δ, δ′} is equivalent to {δ} (by Absorption)

• ∅ ⊆ δ for any clause δ, so any {δ1, … , δn, ∅} is equivalent to {∅}

Vaishnavi COL703 - Lecture 4 August 8, 2024 19 / 20



CNF: Deleting “unnecessary” clauses

• Wewould like to show that {φ0, … ,φn} ⊧ ψ

• Needs us to show that (⋀0⩽i⩽n φi) ∧ ¬ψ is unsatisfiable

• Convert (⋀0⩽i⩽n φi) ∧ ¬ψ into CNF

• This yields a set of clauses

• Systematically delete “unnecessary” clauses from this set of clauses

• If we are left with the empty clause at the end, the expression is
unsatisfiable; therefore ψ is a logical consequence of {φ0, … ,φn}

Vaishnavi COL703 - Lecture 4 August 8, 2024 20 / 20


