Lecture 4 - More Propositional Logic

Vaishnavi Sundararajan

COL703 - Logic for Computer Science

Logical consequence

- What does it mean for a valuation τ to be a model of a formula φ ?
- τ makes some atomic propositions true, and also makes ϕ true
- A proposition φ is called a **logical consequence** of a set Γ of propositions if any valuation that is a model for Γ is also a model for φ
- Slightly overload notation to denote this also by $\Gamma \models \varphi$ (even though Γ can contain non-atomic formulas)
- For an empty Γ , logical consequence is nothing but validity

More on logical consequence

Theorem(s): For any finite set Γ = {φ*ⁱ* ∣ 0 ⩽ *i* ⩽ *n*} of propositions and any proposition ψ , the following are true.

$$
\Gamma \models \psi \text{ iff } \left(\bigwedge_{0 \leq i \leq n} \varphi_i \right) \supset \psi \text{ is valid}
$$
\n
$$
\Gamma \models \psi \text{ iff } \varphi_0 \supset (\varphi_1 \supset (\dots (\varphi_n \supset \psi) \dots)) \text{ is valid}
$$
\n
$$
\Gamma \models \psi \text{ iff } \left(\bigwedge_{0 \leq i \leq n} \varphi_i \right) \land \neg \psi \text{ is unsatisfiable}
$$

Logical consequence

Theorem: $\Gamma \models \psi$ iff $\langle \rangle$ 0⩽*i*⩽*n* φ_i ρ \Rightarrow ψ is valid

Proof:

 $\Gamma \models \psi$ iff any τ that is a model for Γ is also a model for ψ .

- (iff) For every τ , if $\llbracket \phi_i \rrbracket_{\tau} = T$ for every $0 \leq i \leq n$, then $\llbracket \psi \rrbracket_{\tau} = T$.
- (iff) For every τ , if $\llbracket \Lambda_{0 \le i \le n} \varphi_i \rrbracket_\tau = T$, then $\llbracket \psi \rrbracket_\tau = T$.
- (iff) For every τ , $\left[\left(\bigwedge_{0 \leq i \leq n} \varphi_i\right) \supset \psi\right]_{\tau} = T$.
- (iff) $(\Lambda_{0 \le i \le n} \varphi_i) \supset \psi$ is valid.

Exercise: Prove the other two theorems on the previous slide.

Logical equivalence

- We say that φ *logically implies* ψ iff φ ⊃ ψ is valid
- We say that φ is **logically equivalent** to ψ iff φ logically implies ψ and vice versa
- We denote this by $\varphi \Leftrightarrow \psi$
- For example, $\varphi \land \psi \Leftrightarrow \psi \land \varphi$, since \land is commutative
- Have to show that each direction of this identity is a validity
- Can write many such identities

Propositional identities

- Negation: $\neg\neg\phi \Leftrightarrow \varphi$
- Zero: φ ∧ *F* ⇔ *F* and φ ∨ *T* ⇔ *T*
- Identity: $\varphi \land T \Leftrightarrow \varphi$ and φ ∨ *F* ⇔ φ

For $\circ \in \{\land, \lor\}$, the following hold:

- Commutativity: $\varphi \circ \psi \Leftrightarrow \psi \circ \varphi$ Idempotence: $\varphi \circ \varphi \Leftrightarrow \varphi$
- Associativity: $\varphi \circ (\psi \circ \xi) \Leftrightarrow (\varphi \circ \psi) \circ \xi$
- Distributivity: $\varphi \circ (\psi * \xi) \Leftrightarrow (\varphi \circ \psi) * (\varphi \circ \xi)$ (where * is the dual of ∘)
- De Morgan's laws: $\neg(\varphi \circ \psi) \Leftrightarrow (\neg \varphi) * (\neg \psi)$
- Absorption: $\varphi \circ (\varphi * \psi) \Leftrightarrow \varphi$
- Implication: $\varphi \supset \psi \Leftrightarrow \neg \varphi \vee \psi$
- Inversion: $\neg F \Leftrightarrow T$ and $\neg T \Leftrightarrow F$
- Simplification: φ ∨ ¬φ ⇔ *T* and φ ∧ ¬φ ⇔ *F*

Digression: Functional completeness

- How many functions are there on a countable set of atoms?
- Can one express each such function as an expression in some logic?
- How "big" a language do I need? How many distinct operators?
- In general, infinitely many!
- Consider N with addition, subtraction, multiplication, division
- Can one express exponentiation with these?
- But for the set $\{T, F\}$, Boolean identities come to the rescue!

Functional completeness

- Given any Boolean operator of any arity, it is possible to define a logically equivalent operator in propositional logic
- PL is **functionally complete** if any Boolean function can be represented as an expression in PL
- We will often instead refer to the set of operators involved in the language as being functionally complete
- In fact, we do not even need ⊃
- **Theorem**: {¬, ∧, ∨} is functionally complete

{¬, ∧, ∨} **is functionally complete**

• *n*-ary Boolean function *f* with inputs a_1 through a_n and truth value *b*. $m = 2^n - 1$ rows in truth table. Denote the value of a_i in row *r* by a_{ri} .

Fix distinct atoms $p_1, ..., p_n \subseteq AP$. Define:

$$
\text{pmap}(r, i) = \begin{cases} p_i & \text{if } a_{ri} = T \\ \neg p_i & \text{if } a_{ri} = F \end{cases}
$$

Equivalent expression(s):

$$
\bigvee_{0 \leq r \leq m} \left\{ \bigwedge_{1 \leq i \leq n} \text{pmap}(r, i) \middle| b_r = T \right\}
$$
\n
$$
\bigwedge_{0 \leq r \leq m} \left\{ \bigvee_{1 \leq i \leq n} \neg \text{pmap}(r, i) \middle| b_r = F \right\}
$$

Functional completeness

- Empty disjunction is equivalent to F
- Empty conjunction is equivalent to T
- **Exercise**: Prove that { \land , \neg } and { \lor , \neg } are functionally complete
- **Exercise**: Prove that {∧, ∨} is not functionally complete

Normal Forms

- It is useful to have a notion of a "general shape" for any expression
- Think of the general expression we just created, given any operator
- Disjunction over conjunctions; each conjunct an atom or its negation
- Various such "general shapes" are possible
- A **normal form** is a "general shape" such that any expression has a logical equivalent of that particular shape

Negation Normal Form

- A **literal** is an atom (positive literal) or its negation (negative literal)
- Set *L* of literals $L = AP \cup \{\neg p \mid p \in AP\}$
- A formula in **negation normal form (NNF)** has the grammar $\varphi, \psi \coloneqq \ell \in \mathcal{L} \mid \varphi \wedge \psi \mid \varphi \vee \psi$
- An expression in NNF has negations pushed to the "innermost" level
- **Theorem**: Every expression in PL is logically equivalent to one in NNF
- Proof sketch: Consider expressions over the functionally complete set {∧, ∨, ¬}. Remove double negations and push negations inside using de Morgan's laws wherever possible.

Conjunctive & Disjunctive Normal Forms

• An expression in **conjunctive normal form (CNF)** is of the form

δ¹ ∧ δ² ∧ … ∧ δ*ⁿ*

- Each δ*ⁱ* is called a **clause**
- For CNF: each δ_i itself has the shape $\ell_{i1} \vee \ell_{i2} \vee ... \vee \ell_{i m_i}$ (each $\ell_{ij} \in \mathcal{L}$)
- An expression in **disjunctive normal form (DNF)** is of the form δ¹ ∨ δ² ∨ … ∨ δ*ⁿ*

where each δ*ⁱ* has the shape ℓ*i*¹ ∧ ℓ*i*² ∧ … ∧ ℓ*imⁱ* (each ℓ*ij* ∊ ℒ)

- **Theorem**: Every expression in PL is logically equivalent to one in CNF
- **Theorem**: Every expression in PL is logically equivalent to one in DNF
- **Exercise(s)**: Prove the above two theorems

Satisfiability/Validity Again

- Checking for satisfiability requires us to find a model
- Checking for (in)validity requires us to find a falsifying valuation
- We set up logical consequence/equivalence to simplify this process
- Easier for some normal forms than for others!
- **Falsifying CNF expressions is easy**

Falsifying CNF expressions

- A CNF expression looks like $\delta_1 \wedge \delta_2 \wedge ... \wedge \delta_n$
- Each δ_i of the form $\ell_{i1} \vee \ell_{i2} \vee ... \vee \ell_{im}$
- What does it mean for a CNF expression to be made false under some valuation?
- At least one clause must be made false
- Suppose $p \in AP$ and $\neg p$ both occur as literals in a clause δ_i
- Can δ_i be made false under any valuation?
- **Theorem**: $\delta_1 \wedge \delta_2 \wedge ... \wedge \delta_n$ can be falsified iff there is some δ_i which does not contain both a propositional atom and its negation as literals.

Satisfiability/Validity Again

- Checking for satisfiability requires us to find a model
- Checking for (in)validity requires us to find a falsifying valuation
- We set up logical consequence/equivalence to simplify this process
- Easier for some normal forms than for others!
- **Falsifying CNF expressions is easy**
- **Satisfying DNF expressions is easy**

Satisfying DNF expressions

- A DNF expression looks like δ_1 ∨ δ_2 ∨ ... ∨ δ_n
- Each δ_i of the form $\ell_{i1} \wedge \ell_{i2} \wedge ... \wedge \ell_{im}$
- What does it mean for a DNF expression to be made true under some valuation?
- At least one clause must be true
- **Exercise**: State and prove the corresponding theorem (dual of CNF)

Validity

- Easy to check falsification of CNF expressions
- Recall theorems about logical consequence from earlier
- First two reduce it to checking validity of an "implies" expression
- Converting that to CNF is complicated
- Use the third theorem.

$$
\{\varphi_0, ..., \varphi_n\} \models \psi \text{ iff } \left(\bigwedge_{0 \leq i \leq n} \varphi_i\right) \land \neg \psi \text{ is unsatisfiable}
$$

- Convert RHS expression to CNF as follows:
	- Convert each φ*ⁱ* and ¬ψ to CNF
	- Throw away unnecessary duplicates and put back together using ∧s

CNF: Literals and clauses

- A CNF expression φ looks like $\delta_1 \wedge \delta_2 \wedge ... \wedge \delta_n$
- Think of each δ_i as a set of literals $\{\ell_{i1}, \ell_{i2}, ..., \ell_{im_i}\}$
- Think of φ as a set of clauses, i.e. a set of sets of literals
- The **empty set of clauses** is equivalent to *T*
	- $(\bigwedge_{1\leqslant i\leqslant n}\delta_i)$ is equivalent to $\bigwedge_{1\leqslant i\leqslant n}\delta_i\bigwedge T$ (by Identity)
	- So if $n = 0$, the conjunction is just T
- Similarly, the **empty set of literals** is equivalent to *F*
- If δ_i contains $p \in AP$ and $\neg p$, it is equivalent to T
- If $\delta \subseteq \delta'$ for δ and δ' , then $\{\delta, \delta'\}$ is equivalent to $\{\delta\}$ (by Absorption)
- $\emptyset \subseteq \delta$ for any clause δ , so any $\{\delta_1, ..., \delta_n, \emptyset\}$ is equivalent to $\{\emptyset\}$

CNF: Deleting "unnecessary" clauses

- We would like to show that $\{\varphi_0, ..., \varphi_n\} \models \psi$
- Needs us to show that ($\Lambda_{0 \le i \le n}$ φ*i*) ∧ ¬ψ is unsatisfiable
- Convert (Λ_{0≤*i*≤*n*} φ_{*i*}) ∧ ¬ψ into CNF
- This yields a set of clauses
- Systematically delete "unnecessary" clauses from this set of clauses
- If we are left with the empty clause at the end, the expression is unsatisfiable; therefore ψ is a logical consequence of $\{\varphi_0,...,\varphi_n\}$