Lecture 24 - Hoare logic, more logic

Vaishnavi Sundararajan

COL703 - Logic for Computer Science

Recap

- Wanted to verify that imperative programs operate as expected
- Programs as state transformers function mapping inputs to outputs
- Try to obtain this function and check if it satisfies required guarantees
- Use Hoare logic for this
- Reason about assertions that hold before and after a program
- Hoare triples: {α} c {β}
- *c* is the command, α is the precondition (should hold of the state before the command is run), β is the postcondition (should hold of the state after the command is run)

- Lecture 24 November 14, 2024 2/21

Recap: Big-step semantics for commands

$$
s-\left[skip\right]\rightarrow s
$$
\n
$$
s-\left[skip\right]\rightarrow s
$$
\n
$$
s-\left[skip\right]\rightarrow s
$$
\n
$$
s-\left[x = e\right]\rightarrow s\left[X \rightarrow n\right]
$$
\n
$$
s-\left[c_{1}\right]\rightarrow s'
$$
\n
$$
s \neq b
$$
\n
$$
s-\left[c_{1}\right]\rightarrow s'
$$
\n
$$
s \neq b
$$
\n
$$
s-\left[c_{1}\right]\rightarrow s'
$$
\n
$$
s \neq b
$$
\n
$$
s-\left[c_{1}\right]\rightarrow s'
$$
\n
$$
s \neq b
$$
\n
$$
s-\left[c_{2}\right]\rightarrow s'
$$
\n
$$
s \neq b
$$
\n
$$
s-\left[c_{2}\right]\rightarrow s'
$$
\n
$$
s \neq b
$$
\n
$$
s-\left[c_{2}\right]\rightarrow s'
$$
\n
$$
s \neq b
$$
\n
$$
s-\left[c_{2}\right]\rightarrow s'
$$
\n<math display="</math>

Recap: Hoare logic rules

Carson	Skip	Assign					
$\{\alpha\} \operatorname{skip} \{\alpha\}$	$\{\alpha(e)\} \operatorname{X} = e \{\alpha(\operatorname{X})\}$	$\{\operatorname{assign}$					
$\{\alpha\} \operatorname{c} \{\beta\}$	$\{\beta\} \operatorname{c'} \{\varphi\}$	$\{\operatorname{seq}$	seq	$\operatorname{q} \{\alpha\} \operatorname{c} \{\beta\}$	$\operatorname{q} \{\alpha\} \operatorname{q} \{\beta\}$	$\operatorname{q} \{\alpha\} \operatorname{q} \{\beta\}$	$\operatorname{q} \{\alpha\} \operatorname{q} \{\beta\}$
$\{\alpha \wedge b\} \operatorname{q} \{\beta\}$	$\{\alpha \wedge \neg b\} \operatorname{q'} \{\beta\}$	$\{\operatorname{q} \wedge \operatorname{q} \{\alpha\} \{\alpha\} \operatorname{q} \{\alpha\} \{\alpha\} \text{ while } b \text{ do } c \text{ end } \{\alpha \wedge \neg b\}$	$\text{While } b \text{ do } c \text{ end } \{\alpha \wedge \neg b\}$				

We say that $\vdash \{\alpha\} c \{\beta\}$ if there is a proof of $\{\alpha\} c \{\beta\}$ using these rules.

Showed that this system was sound. Also showed it was complete assuming the theorem on the next slide.

WLP theorem

Theorem (Weakest liberal precondition): For every assertion ψ and command *c*, there is an assertion $wlp(c, \psi)$ such that:

- 1. for all states *s*, we have that *s* ⊧ *wlp*(*c*, ψ) iff for all states *s'*, if *s*−[*c*]→*s'*, then $s' \models \psi$, and
- 2. \vdash {*w*lp(*c*, ψ)} *c* {ψ}.
- *wlp*(*c*, ψ) is essentially the least restrictive α such that running *c* in **any** state that satisfies α leads the system to a state that satisfies ψ .
- Need to inductively construct a $wlp(c, \psi)$ for every ψ
- $wlp(\text{skip}, \psi) := \psi \text{ and } wlp(X = e, \psi(X)) := \psi(e)$
- **Exercise**: Prove (1) and (2) for the $\frac{\sinh x}{x} = e$ cases.
- Rest of the proof by induction on the structure of commands.

• $wlp(c_1; c_2, \psi) :=$

- $wlp(c_1; c_2, \psi) := wlp(c_1, wlp(c_2, \psi))$
- (1) Have to show that for all states *s*, we have that $s \models \omega \mid p(c, \psi)$ iff for all states *s'*, if s — $[c] \rightarrow s'$, then $s' \models \psi$.
- When does s — $[c_1; c_2] \rightarrow s'$ hold?

- $wlp(c_1; c_2, \psi) := wlp(c_1, wlp(c_2, \psi))$
- (1) Have to show that for all states *s*, we have that $s \models \omega \mid p(c, \psi)$ iff for all states *s'*, if s — $[c] \rightarrow s'$, then $s' \models \psi$.
- When does s $[c_1; c_2]$ \rightarrow s' hold? When there is an s'' such that s — $[c_1] \rightarrow s''$ and s'' — $[c_2] \rightarrow s'$.
- Two applications of IH yield *s*["] ⊧ $wlp(c_2, ψ)$ and *s* ⊧ $wlp(c_1, wlp(c_2, ψ))$.
- (2) Have to show that $\vdash \{wlp(c_1, wlp(c_2, \psi))\} c_1; c_2 \{\psi\}.$
- Subproofs: $\{wlp(c_1, wlp(c_2, \psi))\} c_1 \{\beta\}$ and $\{\beta\} c_2 \{\psi\}$
- What β do we choose?

- $wlp(c_1; c_2, \psi) := wlp(c_1, wlp(c_2, \psi))$
- (1) Have to show that for all states *s*, we have that $s \models \omega \mid p(c, \psi)$ iff for all states *s'*, if s — $[c] \rightarrow s'$, then $s' \models \psi$.
- When does s $[c_1; c_2]$ \rightarrow s' hold? When there is an s'' such that s — $[c_1] \rightarrow s''$ and s'' — $[c_2] \rightarrow s'$.
- Two applications of IH yield *s*["] ⊧ $wlp(c_2, ψ)$ and *s* ⊧ $wlp(c_1, wlp(c_2, ψ))$.
- (2) Have to show that $\vdash \{wlp(c_1, wlp(c_2, \psi))\} c_1; c_2 \{\psi\}.$
- Subproofs: $\{wlp(c_1, wlp(c_2, \psi))\} c_1 \{\beta\}$ and $\{\beta\} c_2 \{\psi\}$
- What $β$ do we choose? What do we get from IH?
- **Exercise**: Fill in the details to complete this case

• *wlp*(*if b then do* c_1 *else* c_2 *end*, ψ)

- *wlp*(*if b then do* c_1 *else* c_2 *end*, ψ) $:=$ (*b* \wedge *wlp*(c_1 , ψ)) \vee (\neg *b* \wedge *wlp*(c_2 , ψ))
- Consider *s* such that $s \models (b \land \text{wlp}(c_1, \psi)) \lor (\neg b \land \text{wlp}(c_2, \psi))$
- Then, *s* satisfies at least one of the two disjuncts
- Suppose *s* ⊧ (*b* ∧ *wlp*(c ₁, ψ))
- Then, $s \models b$ and $s \models \text{wlp}(c_1, \psi)$
- Consider any s' such that s —[if *b* then do c_1 else c_2 end] \rightarrow s'
- When is this true? If $s \models b$ and $s-[c_1] \rightarrow s'$.
- By IH, for all states *s'*, if s $[c_1]$ *s'*, then $s' \models \psi$. So done!
- Similarly for the case when *s* ⊧ (¬*b* ∧ *wlp*(c ₂, ψ))

- *wlp*(*if b then do* c_1 *else* c_2 *end*, ψ) $:=$ (*b* \wedge *wlp*(c_1 , ψ)) \vee (\neg *b* \wedge *wlp*(c_2 , ψ))
- We denote by IF the command *if b then do c*₁ else *c*₂ end
- Let *s* be a state. Suppose for every *s'* s.t. *s* [IF]→*s'*, *s'* ⊧ ψ
- Suppose $s \models b$. Then, since s —[IF] $\rightarrow s'$, it must be that s —[c_1] $\rightarrow s'$.
- By IH $s \models wlp(c_1, \psi)$. So $s \models (b \land wlp(c_1, \psi))$
- Similarly, in the other case, $s \models (\neg b \land \textit{wlp}(c_2, \psi))$
- So *s* ⊧ (*b* ∧ *wlp*(*c*¹ , ψ)) ∨ (¬*b* ∧ *wlp*(*c*² , ψ)), i.e. *s* ⊧ *wlp*(IF, ψ)
- Now we have to show that $\vdash \{wlp(IF, \psi)\}$ IF $\{\psi\}$
- By IH, $\vdash \{w \mid p(c_i, \psi)\} c_i \{\psi\}$ for $i \in \{1, 2\}$
- Get \vdash {*wlp*(IF, ψ)} IF {ψ} using these proofs and **Con** and **If**

$$
\begin{array}{c}\n\text{IH} & \text{IH} \\
\vdots \\
\text{H} & \text{I}\text{H} \\
\vdots \\
\text{H} & \text{I}\text{H} \\
\text{I}\text{H} & \text{II}\text{H} \\
$$

where $\psi_b = b \wedge wlp(\text{IF}, \psi)$ and $\psi_{\neg b} = \neg b \wedge wlp(\text{IF}, \psi)$

- Suppose *c* is such that $wlp(c, \theta)$ is defined for all assertions θ
- We denote by WHILE the command *while b do c end*
- We look at WHILE with postcondition ψ
- Suppose *X* and *Y* are the only program variables appearing in *b*, *c*, and ψ
- We want a *wlp*(WHILE, ψ) which satisfies *s* ⊧ *wlp*(WHILE, ψ) iff *s* ′ ⊧ ψ for all s' s.t. s [WHILE] \rightarrow s'.
- That is, for every sequence of states $s_0, s_1, ..., s_k$ such that

```
• s = s_0,
```

```
• c transforms s_i to s_{i+1} for all 0 \leq i \leq k,
```

```
• si ⊧ b for all 0 ⩽ i < k, and
```

```
• sk ⊧ ¬b,
```

```
s_k ⊧ \psi.
```
• What (potentially) changes from s_i to s_{i+1} ?

- What (potentially) changes from s_i to s_{i+1} ? Values of *X* and *Y*
- What determines whether *b* is true or not?

- What (potentially) changes from s_i to s_{i+1} ? Values of *X* and *Y*
- What determines whether *b* is true or not? Again, the values of *X* and *Y*

November 14, 2024 11/21

- Denote s_i by $s(m_i, n_i)$, where $s_i(X) = m_i$ and $s_i(Y) = n_i$ for each *i*
- Then, *s* ⊧ *wlp*(WHILE, ψ) iff ℕ ⊧ ψ(*m^k* , *nk*) for all sequences (*m*0, *n*0), (*m*¹ , *n*1), … , (*m^k* , *nk*) s.t. the following hold:
- for all $i < k$, $s(m_i, n_i)$ $[c]$ \rightarrow $s(m_{i+1}, n_{i+1})$, and
- for all *i* < *k*, ℕ ⊧ *b*(*mⁱ* , *ni*), and
- ℕ ⊧ ¬*b*(*m^k* , *nk*)

- For every *i*, $s_{i+1} \in (X = m_{i+1}) \land (Y = n_{i+1})$ (and for each *i*, there is a **unique** s_{i+1} obtained by running *c* at s_i – Why?)
- So use IH and s_i $[c] \rightarrow s_{i+1}$ to get $s_i \in wlp(c, (X = m_{i+1}) \land (Y = n_{i+1}))$
- Since executing *c* at s_i DOES yield a next state, $s_i \models \neg wlp(c, 0 = 1)$
- So *sⁱ* ⊧ *wlp*(*c*, (*X* = *mi*+1) ∧ (*Y* = *ni*+1)) ∧ ¬*wlp*(*c*, 0 = 1)
- What if $wlp(c, (X = m_{i+1}) \wedge (Y = n_{i+1}))$ contains *X* and/or *Y*?
- In state *sⁱ* , *X* and *Y* should get meaning *mⁱ* and *nⁱ* respectively
- But I get s_i from *s* by modifying only *X* and *Y* (to make them m_i and n_i)

November 14, 2024 12/21

- Can therefore evaluate the *wlp* formulas at *s* itself, with this substitution applied!
- Substitution lemma again: Apply the substitution to the formula whose satisfaction we check, not to the interpretation

- s_i $\left[\frac{c}{s_i + 1} \text{ iff } s_i \in [w] p(c, (X = m_{i+1}) \land (Y = n_{i+1})) \land \neg w p(c, 0 = 1) \right]$ iff *s*(m_i , n_i) ⊧ $[wlp(c, (X = m_{i+1}) ∧ (Y = n_{i+1})) ∧ \neg wlp(c, 0 = 1)]$ iff *s* ⊧ $[wlp(c, (X = m_{i+1}) ∧ (Y = n_{i+1})) ∧ ¬wlp(c, 0 = 1)](m_i, n_i)$
- So *s* ⊧ *wlp*(WHILE, ψ) iff

$$
s \in \forall k, m_0, n_0, m_1, n_1, \dots, m_k, n_k : X = m_0 \land Y = n_0
$$

$$
\land \{\forall i < k : [b \land wlp(c, (X = m_{i+1}) \land (Y = n_{i+1}))
$$

$$
\land \neg wlp(c, 0 = 1)](m_i, n_i)
$$

$$
\land \neg b(m_k, n_k) \land \} \supset \psi(m_k, n_k)
$$

- But we cannot quantify over sequences of natural numbers like this
- Ring any bells?

- s_i $\left[\frac{c}{s_i + 1} \text{ iff } s_i \in [w] p(c, (X = m_{i+1}) \land (Y = n_{i+1})) \land \neg w p(c, 0 = 1) \right]$ iff *s*(m_i , n_i) ⊧ $[wlp(c, (X = m_{i+1}) ∧ (Y = n_{i+1})) ∧ \neg wlp(c, 0 = 1)]$ iff *s* ⊧ $[wlp(c, (X = m_{i+1}) ∧ (Y = n_{i+1})) ∧ ¬wlp(c, 0 = 1)](m_i, n_i)$
- So $s \models \textit{wlp}($ WHILE, ψ) if f

s ⊧ ∀ *k*, *m*0, *n*0, *m*¹ , *n*¹ , … , *m^k* , *n^k* ∶ *X* = *m*⁰ ∧ *Y* = *n*⁰ \wedge { $\forall i < k : [b \wedge w | p(c, (X = m_{i+1}) \wedge (Y = n_{i+1}))$ Λ ¬wlp(*c*, 0 = 1)](m_i , n_i) $\wedge \neg b(m_k, n_k) \land$ } ⊃ ψ(m_k, n_k)

- But we cannot quantify over sequences of natural numbers like this
- Ring any bells? Use Gödel's $β$ -function lemma to get around it.

- So this proved (1) for the while case
- To prove (2), we need some extra work.
- One major ingredient is to show that ⊧ (*b* ∧ *wlp*(WHILE, ψ)) ⊃ *wlp*(*c*,*wlp*(WHILE, ψ)).
- One can use this, IH, and the **Con** and **While** rules to get the proof.

FOL?

- Most applications we saw so far used first-order logic
- But we also saw that certain things are not expressible in FOL
- The FO theory of the natural numbers is incomplete
- Does it help to go one level up?
- To go from propositional ("zeroth-order") to first-order, we added quantification on variables
- How does one go from first-order to **second-order logic**?

FOL?

- Most applications we saw so far used first-order logic
- But we also saw that certain things are not expressible in FOL
- The FO theory of the natural numbers is incomplete
- Does it help to go one level up?
- To go from propositional ("zeroth-order") to first-order, we added quantification on variables
- How does one go from first-order to **second-order logic**?
- Quantify on **sets of** variables; Can quantify over predicates now!
- **Exercise**: Think of how to express paths in a graph using second-order logic

Second order logic: Naturals

- What about the second-order theory of the naturals?
- Recall $(A7_{\varphi})$: $\varphi(0) \supset \forall x$. $[\varphi(x) \supset \varphi(s(x))] \supset \forall x$. $[\varphi(x)]$
- Does this give you the full power of induction?

Second order logic: Naturals

- What about the second-order theory of the naturals?
- Recall $(A7_{\varphi})$: $\varphi(0) \supset \forall x$. $[\varphi(x) \supset \varphi(s(x))] \supset \forall x$. $[\varphi(x)]$
- Does this give you the full power of induction? **No!**
- Only applies to predicates definable in the language (as $\varphi(x)$)!
- Second-order logic lets you say this for any set *P*
- You can express + and × in the language, so no need for *A*3, *A*4, *A*5, *A*6!
- *A*7 ∶ ∀*P*. [*P*(0) ⊃ ∀*x*. [*P*(*x*) ⊃ *P*(*s*(*x*))] ⊃ ∀*x*. [*P*(*x*)]]
- **Theorem (Dedekind)**: A mathematical structure satisfies *A*1, *A*2, *A*7 iff it is isomorphic to (ℕ, 0,*s*)

November 14, 2024 16/21

• So why not move to second-order logic?

Second order logic: Naturals

- What about the second-order theory of the naturals?
- Recall $(A7_{\varphi})$: $\varphi(0) \supset \forall x$. $[\varphi(x) \supset \varphi(s(x))] \supset \forall x$. $[\varphi(x)]$
- Does this give you the full power of induction? **No!**
- Only applies to predicates definable in the language (as $\varphi(x)$)!
- Second-order logic lets you say this for any set *P*
- You can express + and × in the language, so no need for *A*3, *A*4, *A*5, *A*6!
- *A*7 ∶ ∀*P*. [*P*(0) ⊃ ∀*x*. [*P*(*x*) ⊃ *P*(*s*(*x*))] ⊃ ∀*x*. [*P*(*x*)]]
- **Theorem (Dedekind)**: A mathematical structure satisfies *A*1, *A*2, *A*7 iff it is isomorphic to (ℕ, 0,*s*)
- So why not move to second-order logic? It has no "nice" proof system!

Other logics

- Recall our model for Tic-Tac-Toe
- Could not easily express that \bigcirc and \times always alternate
- Could not say that eventually either one wins or draw
- Need logic for expressing properties that hold always or sometimes
- Enter **temporal logic**
- $\varphi, \psi := p \mid \neg \varphi \mid \varphi \vee \psi \mid X\varphi \mid \varphi U\psi$, where $p \in AP$
- *X*: "In the next state (φ holds)", U: "(φ holds) until (ψ)"
- System moves from state to state at each (global) clock tick
- Crucial to system verification for dynamic systems!
- Equivalent to the first-order logic of < with only unary predicates

(Linear) Temporal logic

- States form a directed path (the model)
- An edge in this path is one clock tick
- Can talk about formulas being true at a particular node in this path
- What semantics do these formulas get now?

Linear temporal logic

- Can define new unary operators
- *G*φ: (**Globally**) φ holds on the entire subsequent path
- *F*φ: (**In Future**) φ holds at some state on the subsequent path

- **Exercise**: Express *G* and *F* using *X* and *U*
- \bigcirc and \times always alternate:

Linear temporal logic

- Can define new unary operators
- *G*φ: (**Globally**) φ holds on the entire subsequent path
- *F*φ: (**In Future**) φ holds at some state on the subsequent path

- **Exercise**: Express *G* and *F* using *X* and *U*
- ○ and × always alternate: $G((\bigcirc \wedge X\times) \vee (\times \wedge X\bigcirc))$
- **Exercise**: Formalize "eventually either one wins or draw" using our earlier formulas for win and empty cells

Other temporal logics

- LTL looks at individual system executions as **paths**
- **Computation tree logic (CTL)** talks about the entire transition system
- CTL can talk about "along all paths" (*A*) and "along some path" (*E*)
- Can talk about *AX*φ, for example (but *X*φ is not allowed in the syntax)
- Useful for reasoning about multiple executions of the system simultaneously

What more can I do in this area?

- Logics are inherently interesting of course
- Various logics; choose the one that is "most useful"
- Many mathematical questions to be posed/answered
- About expressive power, about structural restrictions...
- Model theoretic investigations into truth and satisfiability
- Many connections to computer science as well!
- Verification/modelling applications
- Proof theoretic investigations into provability and feasibility
- Questions of algorithms/complexity wrt satisfiability/provability also