
Lecture 24 - Hoare logic, more logic

Vaishnavi Sundararajan

COL703 - Logic for Computer Science

Vaishnavi COL703 - Lecture 24 November 14, 2024 1 / 21



Recap

• Wanted to verify that imperative programs operate as expected
• Programs as state transformers – function mapping inputs to outputs
• Try to obtain this function and check if it satisfies required guarantees
• Use Hoare logic for this
• Reason about assertions that hold before and after a program
• Hoare triples: {α} c ൛βൟ
• c is the command, α is the precondition (should hold of the state before
the command is run), β is the postcondition (should hold of the state
after the command is run)
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Recap: Big-step semantics for commands

s [skip] //s
JeKs = n

s [X = e] //s[X ↦ n]
s [c1] //s1 s1 [c2] //s2

s [c1; c2] //s2

s ⊧ b s [c1] //s′

s [if b then do c1 else c2 end] //s′
s ⊭ b s [c2] //s′

s [if b then do c1 else c2 end] //s′

s ⊭ b

s [while b do c end] //s

s ⊧ b s [c] //s1 s1 [while b do c end] //s2

s [while b do c end] //s2

where
(s[X ↦ n])(Y) = ቐ

n if Y = X

s(Y) otherwise
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Recap: Hoare logic rules

Skip
{α} skip {α}

Assign
{α(e)}X = e {α(X)}

{α} c ൛βൟ ൛βൟ c′ ൛φൟ
Seq

{α} c; c′ ൛φൟ
⊧ α′ ⊃ α {α} c ൛βൟ ⊧ β ⊃ β′

Con
{α′} c ൛β′ൟ

{α ∧ b} c ൛βൟ {α ∧ ¬b} c′ ൛βൟ
If

{α} if b then do c else c′ end ൛βൟ
{b ∧ ι} c {ι}

While
{ι}while b do c end {ι ∧ ¬b}

We say that ⊢ {α} c ൛βൟ if there is a proof of {α} c ൛βൟ using these rules.

Showed that this system was sound. Also showed it was complete assuming
the theorem on the next slide.
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WLP theorem
Theorem (Weakest liberal precondition): For every assertion ψ and
command c, there is an assertion wlp(c,ψ) such that:
1. for all states s, we have that s ⊧ wlp(c,ψ) iff for all states s′, if s [c] //s′ ,
then s′ ⊧ ψ, and

2. ⊢ ൛wlp(c,ψ)ൟ c ൛ψൟ.

• wlp(c,ψ) is essentially the least restrictive α such that running c in any
state that satisfies α leads the system to a state that satisfies ψ.

• Need to inductively construct a wlp(c,ψ) for every ψ
• wlp(skip,ψ) ≔ ψ and wlp(X = e,ψ(X)) ≔ ψ(e)
• Exercise: Prove (1) and (2) for the skip and X = e cases.

• Rest of the proof by induction on the structure of commands.
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WLP theorem: c = c1; c2 case
• wlp(c1; c2,ψ) ≔

wlp(c1,wlp(c2,ψ))
• (1)Have to show that for all states s, we have that s ⊧ wlp(c,ψ) iff for all
states s′, if s [c] //s′ , then s′ ⊧ ψ.

• When does s [c1; c2] //s′ hold? When there is an s″ such that
s [c1] //s″ and s″ [c2] //s′ .

• Two applications of IH yield s″ ⊧ wlp(c2,ψ) and s ⊧ wlp(c1,wlp(c2,ψ)).
• (2)Have to show that ⊢ ൛wlp(c1,wlp(c2,ψ))ൟ c1; c2 ൛ψൟ.
• Subproofs: ൛wlp(c1,wlp(c2,ψ))ൟ c1 ൛βൟ and ൛βൟ c2 ൛ψൟ
• What β do we choose? What do we get from IH?

• Exercise: Fill in the details to complete this case
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WLP theorem: if b then do c1 else c2 end case

• wlp(if b then do c1 else c2 end,ψ)

≔ (b ∧ wlp(c1,ψ)) ∨ (¬b ∧ wlp(c2,ψ))
• Consider s such that s ⊧ (b ∧ wlp(c1,ψ)) ∨ (¬b ∧ wlp(c2,ψ))
• Then, s satisfies at least one of the two disjuncts
• Suppose s ⊧ (b ∧ wlp(c1,ψ))
• Then, s ⊧ b and s ⊧ wlp(c1,ψ)
• Consider any s′ such that s [if b then do c1 else c2 end] //s′

• When is this true? If s ⊧ b and s [c1] //s′ .

• By IH, for all states s′, if s [c1] //s′ , then s′ ⊧ ψ. So done!

• Similarly for the case when s ⊧ (¬b ∧ wlp(c2,ψ))
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WLP theorem: if b then do c1 else c2 end case

• wlp(if b then do c1 else c2 end,ψ) ≔ (b ∧ wlp(c1,ψ)) ∨ (¬b ∧ wlp(c2,ψ))
• We denote by IF the command if b then do c1 else c2 end
• Let s be a state. Suppose for every s′ s.t. s [IF] //s′ , s′ ⊧ ψ

• Suppose s ⊧ b. Then, since s [IF] //s′ , it must be that s [c1] //s′ .

• By IH s ⊧ wlp(c1,ψ). So s ⊧ (b ∧ wlp(c1,ψ))
• Similarly, in the other case, s ⊧ (¬b ∧ wlp(c2,ψ))
• So s ⊧ (b ∧ wlp(c1,ψ)) ∨ (¬b ∧ wlp(c2,ψ)), i.e. s ⊧ wlp(IF,ψ)
• Nowwe have to show that ⊢ ൛wlp(IF,ψ)ൟ IF ൛ψൟ
• By IH, ⊢ ൛wlp(ci,ψ)ൟ ci ൛ψൟ for i ∊ {1, 2}
• Get ⊢ ൛wlp(IF,ψ)ൟ IF ൛ψൟ using these proofs and Con and If
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WLP theorem: if b then do c1 else c2 end case

⊧ ψb ⊃ wlp(c1,ψ)

IH⋅⋅⋅
൛wlp(c1,ψ)ൟ c1 ൛ψൟ

Con
൛ψbൟ c1 ൛ψൟ

⊧ ψ¬b ⊃ wlp(c2,ψ)

IH⋅⋅⋅
൛wlp(c2,ψ)ൟ c2 ൛ψൟ

Con
൛ψ¬bൟ c2 ൛ψൟ

If
൛wlp(IF,ψ)ൟ IF ൛ψൟ

where ψb = b ∧ wlp(IF,ψ) and ψ¬b = ¬b ∧ wlp(IF,ψ)
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WLP theorem: while b do c end case

• Suppose c is such that wlp(c, θ) is defined for all assertions θ
• We denote by WHILE the command while b do c end
• We look at WHILE with postcondition ψ
• Suppose X and Y are the only program variables appearing in b, c, and ψ

• Wewant a wlp(WHILE,ψ)which satisfies s ⊧ wlp(WHILE,ψ) iff s′ ⊧ ψ
for all s′ s.t. s [WHILE] //s′ .

• That is, for every sequence of states s0, s1, … , sk such that
• s = s0,
• c transforms si to si+1 for all 0 ⩽ i < k,
• si ⊧ b for all 0 ⩽ i < k, and
• sk ⊧ ¬b,

sk ⊧ ψ.
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WLP theorem: while b do c end case

• What (potentially) changes from si to si+1?

Values of X and Y

• What determines whether b is true or not? Again, the values of X and Y

• Denote si by s(mi, ni), where si(X) = mi and si(Y) = ni for each i

• Then, s ⊧ wlp(WHILE,ψ) iffℕ ⊧ ψ(mk, nk) for all sequences
(m0, n0), (m1, n1), … , (mk, nk) s.t. the following hold:

• for all i < k, s(mi, ni) [c] //s(mi+1, ni+1) , and
• for all i < k,ℕ ⊧ b(mi, ni), and
• ℕ ⊧ ¬b(mk, nk)
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WLP theorem: while b do c end case

• For every i, si+1 ⊧ (X = mi+1) ∧ (Y = ni+1) (and for each i, there is a
unique si+1 obtained by running c at si –Why?)

• So use IH and si [c] //si+1 to get si ⊧ wlp(c, (X = mi+1) ∧ (Y = ni+1))
• Since executing c at si DOES yield a next state, si ⊧ ¬wlp(c,0 = 1)
• So si ⊧ wlp(c, (X = mi+1) ∧ (Y = ni+1)) ∧ ¬wlp(c,0 = 1)
• What if wlp(c, (X = mi+1) ∧ (Y = ni+1)) contains X and/or Y?
• In state si, X and Y should get meaningmi and ni respectively

• But I get si from s by modifying only X and Y (to make themmi and ni)

• Can therefore evaluate the wlp formulas at s itself, with this
substitution applied!

• Substitution lemma again: Apply the substitution to the formula
whose satisfaction we check, not to the interpretation

Vaishnavi COL703 - Lecture 24 November 14, 2024 12 / 21



WLP theorem: while b do c end case

• si [c] //si+1 iff si ⊧ ൣwlp(c, (X = mi+1) ∧ (Y = ni+1)) ∧ ¬wlp(c,0 = 1)൧
iff s(mi, ni) ⊧ ൣwlp(c, (X = mi+1) ∧ (Y = ni+1)) ∧ ¬wlp(c,0 = 1)൧
iff s ⊧ ൣwlp(c, (X = mi+1) ∧ (Y = ni+1)) ∧ ¬wlp(c,0 = 1)൧(mi, ni)

• So s ⊧ wlp(WHILE,ψ) iff
s ⊧ ∀ k,m0, n0,m1, n1, … ,mk, nk ∶ X = m0 ∧ Y = n0
∧ ൛∀i < k ∶ [b ∧ wlp(c, (X = mi+1) ∧ (Y = ni+1))

∧ ¬wlp(c,0 = 1)](mi, ni)
∧ ¬b(mk, nk)∧ൟ ⊃ ψ(mk, nk)

• But we cannot quantify over sequences of natural numbers like this
• Ring any bells?

Use Gödel’s β-function lemma to get around it.
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WLP theorem: while b do c end case

• So this proved (1) for the while case
• To prove (2), we need some extra work.
• One major ingredient is to show that
⊧ (b ∧ wlp(WHILE,ψ)) ⊃ wlp(c,wlp(WHILE,ψ)).

• One can use this, IH, and the Con andWhile rules to get the proof.
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FOL?

• Most applications we saw so far used first-order logic
• But we also saw that certain things are not expressible in FOL
• The FO theory of the natural numbers is incomplete
• Does it help to go one level up?
• To go from propositional (“zeroth-order”) to first-order, we added
quantification on variables

• How does one go from first-order to second-order logic?

• Quantify on sets of variables; Can quantify over predicates now!
• Exercise: Think of how to express paths in a graph using second-order
logic
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Second order logic: Naturals

• What about the second-order theory of the naturals?

• Recall (A7φ): φ(0) ⊃ ∀x. ൣφ(x) ⊃ φ(s(x))൧ ⊃ ∀x. ൣφ(x)൧
• Does this give you the full power of induction?

No!
• Only applies to predicates definable in the language (as φ(x))!
• Second-order logic lets you say this for any set P
• You can express+ and× in the language, so no need for A3, A4, A5, A6!
• A7 ∶ ∀P. [P(0) ⊃ ∀x. [P(x) ⊃ P(s(x))] ⊃ ∀x. [P(x)]]
• Theorem (Dedekind): A mathematical structure satisfies A1, A2, A7 iff
it is isomorphic to (ℕ,0, s)

• So why not move to second-order logic? It has no “nice” proof system!
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Other logics

• Recall our model for Tic-Tac-Toe
• Could not easily express that# and× always alternate
• Could not say that eventually either one wins or draw
• Need logic for expressing properties that hold always or sometimes
• Enter temporal logic
• φ,ψ ≔ p ∣ ¬φ ∣ φ ∨ ψ ∣ Xφ ∣ φUψ, where p ∊ AP
• X: “In the next state (φ holds)”, U: “(φ holds) until (ψ)”
• Systemmoves from state to state at each (global) clock tick

• Crucial to system verification for dynamic systems!

• Equivalent to the first-order logic of<with only unary predicates
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(Linear) Temporal logic

• States form a directed path (the model)

• An edge in this path is one clock tick
• Can talk about formulas being true at a particular node in this path
• What semantics do these formulas get now?

Xφ
φ

φUψ
φ φ φ ψ ψ

φUψ
ψ
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Linear temporal logic

• Can define new unary operators
• Gφ: (Globally) φ holds on the entire subsequent path
• Fφ: (In Future) φ holds at some state on the subsequent path

Gφ
φ φ φ φ φ φ

Fφ
φ

• Exercise: Express G and F using X and U
• # and× always alternate:

G((# ∧ X×) ∨ (× ∧ X#))
• Exercise: Formalize “eventually either one wins or draw” using our
earlier formulas for win and empty cells
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Other temporal logics

• LTL looks at individual system executions as paths
• Computation tree logic (CTL) talks about the entire transition system
• CTL can talk about “along all paths” (A) and “along some path” (E)
• Can talk about AXφ, for example (but Xφ is not allowed in the syntax)
• Useful for reasoning about multiple executions of the system
simultaneously
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Whatmore can I do in this area?

• Logics are inherently interesting of course
• Various logics; choose the one that is “most useful”
• Manymathematical questions to be posed/answered
• About expressive power, about structural restrictions...
• Model theoretic investigations into truth and satisfiability
• Many connections to computer science as well!
• Verification/modelling applications
• Proof theoretic investigations into provability and feasibility
• Questions of algorithms/complexity wrt satisfiability/provability also
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