#### Lecture 23 - Hoare logic

Vaishnavi Sundararajan

COL703 - Logic for Computer Science

#### So far...

- Want logics to be **sound**, so we can believe what is proved
- Want logics to be **complete**, so we can look for proofs instead of searching for truth!
- Propositional and first-order logic both sound and complete
- Want efficient proof search procedures
- Because logic gets used for verification

### Logic in CS: Formal verification

- "If I type my password in this box, nobody except me gets to know it"
- Testing maybe fine for small programs with restricted use-cases
- What about safety-critical programs that perform financial transactions? manage national data? fly planes?
- Need to prove that no bad things ever happen
- Even missing one possible test execution could be disastrous!
- Perform **formal verification**; use logic
- What does this involve?

3/19

### Logic in CS: Formal verification

- Could cast the system in some logic and make inference
- We saw some models for games etc earlier
- Need to abstract out useless details, but keep the important core
- Sometimes you might not be able to model everything
- Use an expressive-enough logic!
- But what of existing software programs? Abstraction is an extra chore
- Want a quicker way to verify that they do what they're supposed to!

# Verification of imperative programs

- Suppose I have a program written in some imperative language
- How do I figure out if it does exactly what it is supposed to do?
- Need **all possible executions** to satisfy the required guarantee
- Think of the program as transforming machine state
- Essentially a flowchart, where every command box is a transformation
- The overall transformation somehow implies the requirement? Great!

# **Hoare logic**

- Annotate a command by two assertions
- **Precondition**: holds before command is run
- **Postcondition**: holds after command is run
- Can annotate an entire program like this!
- If the states before and after executing the program satisfy some desired properties, the guarantee is met.



#### **Syntax**

- Need to be able to talk about the annotation as well as about commands
- Arithmetic expressions: quantities one assigns to variables

 $e_1, e_2 \coloneqq n \mid X \mid e_1 + e_2 \mid e_1 \times e_2$ 

- *n* is a natural number, **X** is a program variable
- Boolean expressions: quantities one can branch on

 $b_1, b_2 \coloneqq \text{True} \mid \text{False} \mid e_1 == e_2 \mid e_1 \leqslant e_2 \mid \neg b_1 \mid b_1 \land b_2$ 

- *e*<sub>1</sub>, *e*<sub>2</sub> are arithmetic expressions (as expected)
- Commands: refer to one or both of the above

 $c_1, c_2 := \text{skip} \mid X = e \mid c_1; c_2 \mid \text{if } b \text{ then do } c_1 \text{ else } c_2 \text{ end} \mid while b \text{ do } c \text{ end}$ 

### Semantics of arithmetic expressions

- Since programs transform machine state, semantics in terms of states
- What is a state? A finite partial function from program variables to  $\mathbb N$
- We give semantics to the expressions first
- Denote by **[e]**s the meaning of the arithmetic expression **e** in state **s**

[[n]]s := n[[X]]s := s(X) $[[e_1 + e_2]]s := [[e_1]]s + [[e_2]]s$  $[[e_1 \times e_2]]s := [[e_1]]s \times [[e_2]]s$ 

• Need to provide a semantics for the Boolean expressions next

8/19

### Semantics for Boolean expressions

• This we do in the "satisfaction" kind of style

 $s \models TRUE \quad always$   $s \models FALSE \quad never$   $s \models e_1 == e_2 \quad iff \quad \llbracket e_1 \rrbracket s = \llbracket e_2 \rrbracket s$   $s \models e_1 \leqslant e_2 \quad iff \quad \llbracket e_1 \rrbracket s \leqslant \llbracket e_2 \rrbracket s$   $s \models \neg b \quad iff \quad s \neq b$   $s \models b_1 \land b_2 \quad iff \quad s \models b_1 \text{ and } s \models b_2$ 

- How do we now provide semantics to commands?
- A command *c* transforms one state s<sub>1</sub> into another s<sub>2</sub>
- **Big-step semantics** in terms of *c*, *s*<sub>1</sub>, and *s*<sub>2</sub>
- Captures the state change effected by the entire command in one go

#### Semantics for commands

| s—[skip]→s                                                                                                                                                    | $\llbracket e \rrbracket s = n$             |                          | $s - [c_1] \rightarrow s_1$      | $s_1 - [c_2] \rightarrow s_2$              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------|----------------------------------|--------------------------------------------|
|                                                                                                                                                               | $s - [X = e] \rightarrow s[X \mapsto n]$    |                          | $s - [c_1; c_2] \rightarrow s_2$ |                                            |
| $s \models b  s - [c_1] \rightarrow s'$                                                                                                                       | $s \not\models b  s - [c_2] \rightarrow s'$ |                          |                                  |                                            |
| $s = [if b \text{ then do } c_1 \text{ else } c_2 \text{ end}] \rightarrow s'$ $s = [if b \text{ then do } c_1 \text{ else } c_2 \text{ end}] \rightarrow s'$ |                                             |                          |                                  |                                            |
| s ⊭ b                                                                                                                                                         | s⊧b s—[c]                                   | $] \rightarrow s_1  s_1$ | —[while b do                     | <i>c</i> end] $\rightarrow$ s <sub>2</sub> |
| $s \rightarrow [while b do c end] \rightarrow s$                                                                                                              | s—[while b do c end]→s <sub>2</sub>         |                          |                                  |                                            |
| where (s[X ⊢                                                                                                                                                  | $\int n$                                    | if Y                     | = X                              |                                            |
|                                                                                                                                                               | - s(s)                                      | (Y) oth                  | erwise                           |                                            |

**Theorem (Determinism of commands)**: For any command *c* and state *s*, there is at most one *s*' such that  $s - [c] \rightarrow s'$ . **Exercise**: Prove this!

# **Example program**

• What does this piece of code do?

# Example program

x = 3; y = 1; z = 0; while (x > z) do z = z + 1; y = y \* z

end

- What does this piece of code do?
- Let  $c_1 = x = 3$ ; y = 1; z = 0 and w be the while loop after it.
- Denote by (p, q, r) the state  $[x \mapsto q, y \mapsto q, z \mapsto r]$
- Can we show that  $(0, 0, 0) [c_1; w] \rightarrow (3, 6, 3)$ ?
- Easy to analyze assignment statements
- How does one deal with a while loop?

### **Example program: Analysis**

First prove that for all *m*, *n*, *p* ∈ N where *p* ≤ *m*, it is the case that (*m*, *n*, *p*)—[*w*]→(*m*, *f*(*m*, *n*, *p*), *m*), where *f*(*m*, *n*, *p*) = *m* \* (*m* − 1) \* (*m* − 2) \* … \* (*p* + 2) \* (*p* + 1) \* *n*.

### **Example program: Analysis**

- First prove that for all *m*, *n*, *p* ∈ N where *p* ≤ *m*, it is the case that (*m*, *n*, *p*)—[*w*]→(*m*, *f*(*m*, *n*, *p*), *m*), where *f*(*m*, *n*, *p*) = *m* \* (*m* − 1) \* (*m* − 2) \* … \* (*p* + 2) \* (*p* + 1) \* *n*.
- By induction on m p.
- **Base case:** m p = 0, i.e. m = p and f(m, n, p) = n.  $(m, n, p) \neq x > z$ , so we have  $(m, n, p) [w] \rightarrow (m, n, p)$ .
- Induction case: m p > 0, i.e. p < m so  $p + 1 \leq m$ . By IH,

 $(m, n * (p + 1), p + 1) - [w] \rightarrow (m, f(m, n * (p + 1), p + 1), m)$ 

### Example program: Analysis (contd.)

• What is f(m, n \* (p + 1), p + 1)?

### Example program: Analysis (contd.)

- What is *f*(*m*, *n* \* (*p* + 1), *p* + 1)? Nothing but *f*(*m*, *n*, *p*)
- So  $(m, n * (p + 1), p + 1) [w] \rightarrow (m, f(m, n, p), m)$
- Note that  $(m, n, p) [z = z + 1; y = y * z] \rightarrow (m, n * (p + 1), p + 1)$
- So  $(m, n, p) \rightarrow [w] \rightarrow (m, f(m, n, p), m)$
- In particular, (0, 0, 0) [x = m; y = 1; z = 0]→(m, 1, 0), and (m, 1, 0) - [w]→(m, f(m, 1, 0), m), where f(m, 1, 0) = m!

### **Hoare triples**

- Reasoning directly with the transitions of a program: complex
- Instead: reason about assertions that hold before and after a program
- Hoare triples  $\{\alpha\} c \{\beta\}$ 
  - *c* is a command
  - $\alpha$ ,  $\beta$  first-order formulas involving expressions (arithmetic & Boolean)
  - $\alpha$  is the precondition,  $\beta$  is the postcondition of the triple
- Informally, {α} c {β} means that whenever c is run in a state satisfying a, if it terminates, then the end state satisfies β.
- **Partial correctness assertions**: we do not require that *c* terminates
- Hoare logic gives us rules to reason about these triples directly

# **Hoare logic rules**

$$\overline{\{\alpha\} skip \{\alpha\}}$$
Skip $\overline{\{\alpha(e)\}X = e \{\alpha(X)\}}$ Assign $\frac{\{\alpha\} c \{\beta\} \ \{\beta\} c' \{\phi\} \ \{\alpha\} c; c' \{\phi\}\}$ Seq $\models \alpha' \supset \alpha \ \{\alpha\} c \{\beta\} \ \models \beta \supset \beta' \ \{\alpha'\} c \{\beta'\}$  $\vdash \alpha' \supset \alpha \ \{\alpha\} c \{\beta\} \ \models \beta \supset \beta' \ \{\alpha'\} c \{\beta'\}$ Con $\frac{\{\alpha \land b\} c \{\beta\} \ \{\alpha \land \neg b\} c' \{\beta\} \ \{\alpha\} f b then do c else c' end \{\beta\}$ If $\frac{\{b \land \iota\} c \{\iota\} \ \{\iota \land \neg b\}}{\{\iota\} while b do c end \{\iota \land \neg b\}}$ While

We say that  $\vdash \{\alpha\} c\{\beta\}$  if there is a proof of  $\{\alpha\} c\{\beta\}$  using these rules.

#### About the rules: Assign and While

- Assign: α(X) is an assertion in which program variable X possibly occurs, and α(e) obtained by replacing all occurrences of X in α by e.
- If  $\alpha$  is to be satisfied by X after X = 3,  $\alpha$  should hold of 3 to begin with.
- Suppose  $\alpha(X)$  asserts that X is odd.  $\alpha$  true after X = 3; 3 is **already** odd.
- Thus  $\alpha(3)$  is an adequate precondition for  $\alpha(X)$ .
- Same logic works even when *e* contains program identifiers (even *X*).
- While: t is a loop invariant
- A loop invariant is a property that, if it is true at the beginning of a loop iteration, is re-established at the end of the iteration
- Loop invariants are critical to proving the correctness of programs

# **Hoare logic**

- A Hoare triple  $\{\alpha\} c \{\beta\}$  is said to be **valid** (denoted  $\models \{\alpha\} c \{\beta\}$ ) if for all states *s*, *s'*, if  $s \models \alpha$  and  $s [c] \rightarrow s'$ , then  $s' \models \beta$ .
- Having defined  $\vdash \{\alpha\} c\{\beta\}$  and  $\models \{\alpha\} c\{\beta\}$ , what do we ask for next?

# **Hoare logic**

- A Hoare triple  $\{\alpha\} c \{\beta\}$  is said to be **valid** (denoted  $\models \{\alpha\} c \{\beta\}$ ) if for all states *s*, *s'*, if  $s \models \alpha$  and  $s [c] \rightarrow s'$ , then  $s' \models \beta$ .
- Having defined  $\vdash \{\alpha\} c\{\beta\}$  and  $\models \{\alpha\} c\{\beta\}$ , what do we ask for next?
- **Theorem (Soundness)**: If  $\vdash \{\alpha\} c\{\beta\}$ , then  $\models \{\alpha\} c\{\beta\}$
- **Proof sketch**: Proof is by induction on the structure of the proof.
- **Exercise**: Show that **Skip**, **Con**, and **Seq** preserve validity.
- Assign: Also easy, but a friendly old lemma is required!
- If: Needs two cases, both work out thanks to IH
- While: This is the only tough case that needs some analysis.

17/19

### Hoare logic: Soundness (While case)

- We show that for any  $n \in \mathbb{N}$ , and for any s, s' s.t.  $s \models \iota$  and there is a proof of s—[*while b do c end*] $\rightarrow s'$  of size  $\leq n$ , we have  $s' \models \iota \land \neg b$ .
- Consider a proof  $\pi$  of s—[while b do c end] $\rightarrow$ s' of size  $n_0$ .
- Suppose the above statement holds for all  $m < n_0$  (Call this IH<sub>prf</sub>)
- Two cases arise now.
  - $s \neq b$  and s = s': Easily done
  - s ⊨ b, and there is some s" s.t. s—[c]→s" and there is a proof of s" —[while b do c end]→s' of size < n<sub>0</sub>: Use IH and IH<sub>prf</sub>
- Exercise: Fill in the details of this proof
- What next? Completeness
- Remember that we do not require termination

# **Hoare logic: Completeness**

**Theorem (Weakest liberal precondition)**: For every assertion  $\psi$  and command *c*, there is an assertion  $wlp(c, \psi)$  such that (1) for all states *s*, we have that  $s \models wlp(c, \psi)$  iff for all states *s*', if  $s - [c] \rightarrow s'$ , then  $s' \models \psi$ , and (2)  $\vdash \{wlp(c, \psi)\}c\{\psi\}$ .

Suppose we can prove the above theorem. Then we can prove completeness.

**Theorem (Completeness)**: If  $\models \{\varphi\} c \{\psi\}$ , then  $\vdash \{\varphi\} c \{\psi\}$ .

**Proof sketch**: Suppose  $\models \{\varphi\} c \{\psi\}$ . Use the (1) part of the above theorem to show that  $\models \varphi \supset wlp(c, \psi)$ . Then, use the (2) part of the above theorem to apply the **Con** rule to get  $\vdash \{\varphi\} c \{\psi\}$ . **Exercise**: Finish this proof

So now we need to prove the wlp theorem!