
Lecture 23 - Hoare logic

Vaishnavi Sundararajan

COL703 - Logic for Computer Science

Vaishnavi COL703 - Lecture 23 November 11, 2024 1 / 19



So far...

• Want logics to be sound, so we can believe what is proved
• Want logics to be complete, so we can look for proofs instead of
searching for truth!

• Propositional and first-order logic both sound and complete
• Want efficient proof search procedures
• Because logic gets used for verification

Vaishnavi COL703 - Lecture 23 November 11, 2024 2 / 19



Logic in CS: Formal verification

• “If I type my password in this box, nobody except me gets to know it”
• Testing maybe fine for small programs with restricted use-cases
• What about safety-critical programs that perform financial
transactions? manage national data? fly planes?

• Need to prove that no bad things ever happen
• Even missing one possible test execution could be disastrous!
• Perform formal verification; use logic
• What does this involve?

Vaishnavi COL703 - Lecture 23 November 11, 2024 3 / 19



Logic in CS: Formal verification

• Could cast the system in some logic and make inference

• We saw somemodels for games etc earlier
• Need to abstract out useless details, but keep the important core
• Sometimes you might not be able to model everything
• Use an expressive-enough logic!
• But what of existing software programs? Abstraction is an extra chore
• Want a quicker way to verify that they do what they’re supposed to!

Vaishnavi COL703 - Lecture 23 November 11, 2024 4 / 19



Verification of imperative programs

• Suppose I have a programwritten in some imperative language

• How do I figure out if it does exactly what it is supposed to do?
• Need all possible executions to satisfy the required guarantee
• Think of the program as transformingmachine state
• Essentially a flowchart, where every command box is a transformation
• The overall transformation somehow implies the requirement? Great!

Vaishnavi COL703 - Lecture 23 November 11, 2024 5 / 19



Hoare logic

• Annotate a command by two assertions
• Precondition: holds before command is run
• Postcondition: holds after command is run
• Can annotate an entire program like this!

• If the states before and after executing the program satisfy some
desired properties, the guarantee is met.

Vaishnavi COL703 - Lecture 23 November 11, 2024 6 / 19



Syntax

• Need to be able to talk about the annotation as well as about commands
• Arithmetic expressions: quantities one assigns to variables

e1, e2 ≔ n ห X ห e1 + e2 ห e1 × e2
• n is a natural number, X is a program variable

• Boolean expressions: quantities one can branch on

b1, b2 ≔ TRUE ห FALSE ห e1 == e2 ห e1 ⩽ e2 ห ¬b1 ห b1 ∧ b2
• e1, e2 are arithmetic expressions (as expected)
• Commands: refer to one or both of the above

c1, c2 ≔ skip ห X = e ห c1; c2 ห if b then do c1 else c2 end ห while b do c end

Vaishnavi COL703 - Lecture 23 November 11, 2024 7 / 19



Semantics of arithmetic expressions

• Since programs transformmachine state, semantics in terms of states

• What is a state? A finite partial function from program variables toℕ
• We give semantics to the expressions first
• Denote by JeKs the meaning of the arithmetic expression e in state s

JnKs≔ nJXKs≔ s(X)Je1 + e2Ks≔ Je1Ks+ Je2KsJe1 × e2Ks≔ Je1Ks × Je2Ks
• Need to provide a semantics for the Boolean expressions next

Vaishnavi COL703 - Lecture 23 November 11, 2024 8 / 19



Semantics for Boolean expressions

• This we do in the “satisfaction” kind of style

s ⊧ TRUE always

s ⊧ FALSE never

s ⊧ e1 == e2 iff Je1Ks = Je2Ks
s ⊧ e1 ⩽ e2 iff Je1Ks ⩽ Je2Ks

s ⊧ ¬b iff s ⊭ b

s ⊧ b1 ∧ b2 iff s ⊧ b1 and s ⊧ b2
• How do we now provide semantics to commands?
• A command c transforms one state s1 into another s2
• Big-step semantics in terms of c, s1, and s2
• Captures the state change effected by the entire command in one go

Vaishnavi COL703 - Lecture 23 November 11, 2024 9 / 19



Semantics for commands

s [skip] //s
JeKs = n

s [X = e] //s[X ↦ n]
s [c1] //s1 s1 [c2] //s2

s [c1; c2] //s2

s ⊧ b s [c1] //s′

s [if b then do c1 else c2 end] //s′
s ⊭ b s [c2] //s′

s [if b then do c1 else c2 end] //s′

s ⊭ b

s [while b do c end] //s

s ⊧ b s [c] //s1 s1 [while b do c end] //s2

s [while b do c end] //s2

where
(s[X ↦ n])(Y) = ቐ

n if Y = X

s(Y) otherwise

Theorem (Determinism of commands): For any command c and state s,
there is at most one s′ such that s [c] //s′ . Exercise: Prove this!

Vaishnavi COL703 - Lecture 23 November 11, 2024 10 / 19



Example program

x = 3; y = 1; z = 0;
while (x > z) do

z = z + 1; y = y * z
end

• What does this piece of code do?

• Let c1 = x = 3; y = 1; z = 0 and w be the while loop after it.

• Denote by (p, q, r) the state [x ↦ q, y ↦ q, z ↦ r]
• Can we show that (0,0,0) [c1;w] //(3, 6, 3)?
• Easy to analyze assignment statements
• How does one deal with a while loop?

Vaishnavi COL703 - Lecture 23 November 11, 2024 11 / 19



Example program

x = 3; y = 1; z = 0;
while (x > z) do

z = z + 1; y = y * z
end

• What does this piece of code do?

• Let c1 = x = 3; y = 1; z = 0 and w be the while loop after it.

• Denote by (p, q, r) the state [x ↦ q, y ↦ q, z ↦ r]
• Can we show that (0,0,0) [c1;w] //(3, 6, 3)?
• Easy to analyze assignment statements
• How does one deal with a while loop?

Vaishnavi COL703 - Lecture 23 November 11, 2024 11 / 19



Example program: Analysis

• First prove that for allm, n, p ∊ ℕwhere p ⩽ m, it is the case that
(m, n, p) [w] //(m, f(m, n, p),m) , where
f(m, n, p) = m ∗ (m− 1) ∗ (m− 2) ∗ ⋯ ∗ (p+ 2) ∗ (p+ 1) ∗ n.

• By induction onm− p.

• Base case: m− p = 0, i.e. m = p and f(m, n, p) = n. (m, n, p) ⊭ x > z,
so we have (m, n, p) [w] //(m, n, p) .

• Induction case: m− p > 0, i.e. p < m so p+ 1 ⩽ m. By IH,

(m, n ∗ (p+ 1), p+ 1) [w] //(m, f(m, n ∗ (p+ 1), p+ 1),m)

Vaishnavi COL703 - Lecture 23 November 11, 2024 12 / 19



Example program: Analysis

• First prove that for allm, n, p ∊ ℕwhere p ⩽ m, it is the case that
(m, n, p) [w] //(m, f(m, n, p),m) , where
f(m, n, p) = m ∗ (m− 1) ∗ (m− 2) ∗ ⋯ ∗ (p+ 2) ∗ (p+ 1) ∗ n.

• By induction onm− p.

• Base case: m− p = 0, i.e. m = p and f(m, n, p) = n. (m, n, p) ⊭ x > z,
so we have (m, n, p) [w] //(m, n, p) .

• Induction case: m− p > 0, i.e. p < m so p+ 1 ⩽ m. By IH,

(m, n ∗ (p+ 1), p+ 1) [w] //(m, f(m, n ∗ (p+ 1), p+ 1),m)

Vaishnavi COL703 - Lecture 23 November 11, 2024 12 / 19



Example program: Analysis (contd.)

• What is f(m, n ∗ (p+ 1), p+ 1)?

Nothing but f(m, n, p)
• So (m, n ∗ (p+ 1), p+ 1) [w] //(m, f(m, n, p),m)
• Note that (m, n, p) [z = z+ 1; y = y ∗ z] //(m, n ∗ (p+ 1), p+ 1)
• So (m, n, p) [w] / /(m, f(m, n, p),m)
• In particular, (0,0,0) [x = m; y = 1; z = 0] //(m, 1,0) , and
(m, 1,0) [w] //(m, f(m, 1,0),m) , where f(m, 1,0) = m!

Vaishnavi COL703 - Lecture 23 November 11, 2024 13 / 19



Example program: Analysis (contd.)

• What is f(m, n ∗ (p+ 1), p+ 1)? Nothing but f(m, n, p)
• So (m, n ∗ (p+ 1), p+ 1) [w] //(m, f(m, n, p),m)
• Note that (m, n, p) [z = z+ 1; y = y ∗ z] //(m, n ∗ (p+ 1), p+ 1)
• So (m, n, p) [w] / /(m, f(m, n, p),m)
• In particular, (0,0,0) [x = m; y = 1; z = 0] //(m, 1,0) , and
(m, 1,0) [w] //(m, f(m, 1,0),m) , where f(m, 1,0) = m!

Vaishnavi COL703 - Lecture 23 November 11, 2024 13 / 19



Hoare triples

• Reasoning directly with the transitions of a program: complex
• Instead: reason about assertions that hold before and after a program
• Hoare triples {α} c ൛βൟ

• c is a command
• α, β first-order formulas involving expressions (arithmetic & Boolean)
• α is the precondition, β is the postcondition of the triple

• Informally, {α} c ൛βൟmeans that whenever c is run in a state satisfying
α, if it terminates, then the end state satisfies β.

• Partial correctness assertions: we do not require that c terminates
• Hoare logic gives us rules to reason about these triples directly

Vaishnavi COL703 - Lecture 23 November 11, 2024 14 / 19



Hoare logic rules

Skip
{α} skip {α}

Assign
{α(e)}X = e {α(X)}

{α} c ൛βൟ ൛βൟ c′ ൛φൟ
Seq

{α} c; c′ ൛φൟ
⊧ α′ ⊃ α {α} c ൛βൟ ⊧ β ⊃ β′

Con
{α′} c ൛β′ൟ

{α ∧ b} c ൛βൟ {α ∧ ¬b} c′ ൛βൟ
If

{α} if b then do c else c′ end ൛βൟ
{b ∧ ι} c {ι}

While
{ι}while b do c end {ι ∧ ¬b}

We say that ⊢ {α} c ൛βൟ if there is a proof of {α} c ൛βൟ using these rules.

Vaishnavi COL703 - Lecture 23 November 11, 2024 15 / 19



About the rules: Assign andWhile

• Assign: α(X) is an assertion in which program variable X possibly
occurs, and α(e) obtained by replacing all occurrences of X in α by e.

• If α is to be satisfied by X after X = 3, α should hold of 3 to begin with.
• Suppose α(X) asserts that X is odd. α true after X = 3; 3 is already odd.
• Thus α(3) is an adequate precondition for α(X).
• Same logic works even when e contains program identifiers (even X).

• While: ι is a loop invariant
• A loop invariant is a property that, if it is true at the beginning of a loop
iteration, is re-established at the end of the iteration

• Loop invariants are critical to proving the correctness of programs

Vaishnavi COL703 - Lecture 23 November 11, 2024 16 / 19



Hoare logic

• A Hoare triple {α} c ൛βൟ is said to be valid (denoted ⊧ {α} c ൛βൟ) if for all
states s, s′, if s ⊧ α and s [c] //s′ , then s′ ⊧ β.

• Having defined ⊢ {α} c ൛βൟ and ⊧ {α} c ൛βൟ, what do we ask for next?

• Theorem (Soundness): If ⊢ {α} c ൛βൟ, then ⊧ {α} c ൛βൟ
• Proof sketch: Proof is by induction on the structure of the proof.
• Exercise: Show that Skip,Con, and Seq preserve validity.
• Assign: Also easy, but a friendly old lemma is required!
• If: Needs two cases, both work out thanks to IH
• While: This is the only tough case that needs some analysis.

Vaishnavi COL703 - Lecture 23 November 11, 2024 17 / 19



Hoare logic

• A Hoare triple {α} c ൛βൟ is said to be valid (denoted ⊧ {α} c ൛βൟ) if for all
states s, s′, if s ⊧ α and s [c] //s′ , then s′ ⊧ β.

• Having defined ⊢ {α} c ൛βൟ and ⊧ {α} c ൛βൟ, what do we ask for next?
• Theorem (Soundness): If ⊢ {α} c ൛βൟ, then ⊧ {α} c ൛βൟ
• Proof sketch: Proof is by induction on the structure of the proof.
• Exercise: Show that Skip,Con, and Seq preserve validity.
• Assign: Also easy, but a friendly old lemma is required!
• If: Needs two cases, both work out thanks to IH
• While: This is the only tough case that needs some analysis.

Vaishnavi COL703 - Lecture 23 November 11, 2024 17 / 19



Hoare logic: Soundness (While case)

• We show that for any n ∊ ℕ, and for any s, s′ s.t. s ⊧ ι and there is a
proof of s [while b do c end] //s′ of size⩽ n, we have s′ ⊧ ι ∧ ¬b.

• Consider a proof π of s [while b do c end] //s′ of size n0.

• Suppose the above statement holds for allm < n0 (Call this IHprf)
• Two cases arise now.

• s ⊭ b and s = s′: Easily done
• s ⊧ b, and there is some s″ s.t. s [c] //s″ and there is a proof of
s″ [while b do c end] //s′ of size< n0: Use IH and IHprf

• Exercise: Fill in the details of this proof
• What next? Completeness

• Remember that we do not require termination

Vaishnavi COL703 - Lecture 23 November 11, 2024 18 / 19



Hoare logic: Completeness
Theorem (Weakest liberal precondition): For every assertion ψ and
command c, there is an assertion wlp(c,ψ) such that (1) for all states s, we
have that s ⊧ wlp(c,ψ) iff for all states s′, if s [c] //s′ , then s′ ⊧ ψ, and (2)
⊢ ൛wlp(c,ψ)ൟ c ൛ψൟ.

Suppose we can prove the above theorem. Then we can prove completeness.

Theorem (Completeness): If ⊧ ൛φൟ c ൛ψൟ, then ⊢ ൛φൟ c ൛ψൟ.

Proof sketch: Suppose ⊧ ൛φൟ c ൛ψൟ. Use the (1) part of the above theorem to
show that ⊧ φ ⊃ wlp(c,ψ). Then, use the (2) part of the above theorem to
apply the Con rule to get ⊢ ൛φൟ c ൛ψൟ. Exercise: Finish this proof

So now we need to prove the wlp theorem!

Vaishnavi COL703 - Lecture 23 November 11, 2024 19 / 19


