Lecture 23 - Hoare logic

Vaishnavi Sundararajan

COL703 - Logic for Computer Science

Vaishnavi COL703 - Lecture 23

So far...

Want logics to be sound, so we can believe what is proved

Want logics to be complete, so we can look for proofs instead of
searching for truth!

* Propositional and first-order logic both sound and complete

Want efficient proof search procedures

* Because logic gets used for verification

Vaishnavi COL703 - Lecture 23 November 11, 2024 2/19

Logic in CS: Formal verification

* “If I type my password in this box, nobody except me gets to know it”

Testing maybe fine for small programs with restricted use-cases

What about safety-critical programs that perform financial
transactions? manage national data? fly planes?

Need to prove that no bad things ever happen
Even missing one possible test execution could be disastrous!
Perform formal verification; use logic

What does this involve?

Vaishnavi COL703 - Lecture 23 November 11, 2024

3/19

Logic in CS: Formal verification

* Could cast the system in some logic and make inference

* We saw some models for games etc earlier

* Need to abstract out useless details, but keep the important core

* Sometimes you might not be able to model everything

* Use an expressive-enough logic!

* But what of existing software programs? Abstraction is an extra chore

* Want a quicker way to verify that they do what they’re supposed to!

Vaishnavi COL703 - Lecture 23 November 11, 2024 4/19

Verification of imperative programs

* Suppose I have a program written in some imperative language

* How do I figure out if it does exactly what it is supposed to do?

* Need all possible executions to satisfy the required guarantee

¢ Think of the program as transforming machine state

* Essentially a flowchart, where every command box is a transformation

* The overall transformation somehow implies the requirement? Great!

Vaishnavi COL703 - Lecture 23 November 11, 2024 5/19

Hoare logic

* Annotate a command by two assertions
* Precondition: holds before command is run
* Postcondition: holds after command is run

* Can annotate an entire program like this!

If the states before and after executing the program satisfy some
desired properties, the guarantee is met.

Vaishnavi COL703 - Lecture 23 November 11, 2024 6/19

Syntax
* Need to be able to talk about the annotation as well as about commands
* Arithmetic expressions: quantities one assigns to variables
e, e :=n|X|e1+e2|e1xe2
* nisanatural number, X is a program variable
* Boolean expressions: quantities one can branch on
bl, bz = TRUE | FALSE | e == 6y | e <o | —lbl | bl A bz
* ey, e, are arithmetic expressions (as expected)
* Commands: refer to one or both of the above

¢, 63 = skip | X=e | ;6 | if b then do ¢, else c, end | while b do c end

Vaishnavi COL703 - Lecture 23 November 11, 2024 7/19

Semantics of arithmetic expressions

* Since programs transform machine state, semantics in terms of states
* What is a state? A finite partial function from program variables to N
* We give semantics to the expressions first
* Denote by [e]s the meaning of the arithmetic expression e in state s
[n]s=n
[X]s = s(X)
[e1 + ex]ls = [er]s + [e]s

[ey % e;])s = [er]s % [ez]ls

* Need to provide a semantics for the Boolean expressions next

Vaishnavi COL703 - Lecture 23 November 11, 2024 8/19

Semantics for Boolean expressions

* This we do in the “satisfaction” kind of style

s F TRUE always
s F FALSE never
skEep==¢, iff [e;]s = [ey]s
ske <ey iff [e]s < [ey]s
sk—=b iff s¥Db

SsEbyAb, iff sebjandsEDb,

* How do we now provide semantics to commands?

* A command c transforms one state s; into another s,

* Big-step semantics in terms of ¢, s;, and s,

* Captures the state change effected by the entire command in one go

Vaishnavi COL703 - Lecture 23 November 11, 2024 9/19

Semantics for commands

[e]s=n s—al=s si—lel—s,
s—{skip}—s s—[X = e]>s[X & n] s—c; 6] s,
sEb s—gl=s s#Eb s—[c]s
s—[if b then do ¢, else ¢, end]—s' s—{if b then do ¢, else ¢, end]—s'
s#Db skb s—[c]—+s; s;—|whilebdocend]—s,
s—[while b do c end]—s s—[while b do c end]—s,
where n o ify=x

(s[X = n)(¥) =

s(Y) otherwise

Theorem (Determinism of commands): For any command c and state s,
there is at most one s’ such that s—[c]-+s’. Exercise: Prove this!

Vaishnavi COL703 - Lecture 23

Example program

Xx=3;y=1;, z = 0;
while (x > z) do
z=2z+1,y =y %2z

end

* What does this piece of code do?

Vaishnavi COL703 - Lecture 23

Example program

Xx=3;y=1;, z = 0;
while (x > z) do
zZ=2z+1,y =y %z

end

What does this piece of code do?

* Letc; = x = 3;y = 1;z = 0 and w be the while loop after it.
* Denote by (p,q,7) the state [x = q,y = g,z = 7]

* Can we show that (0,0,0)—[c;; w]—(3,6,3)?

* Easy to analyze assignment statements

* How does one deal with a while loop?

Vaishnavi COL703 - Lecture 23 November 11, 2024 1/19

Example program: Analysis

* First prove that for all m, n, p € N where p < m, it is the case that
(m,n,p)—[wl—(m, f(m,n, p), m), where
fimnp) =ms(Mm—1)*(Mm=2)*-*(p+2)*(p+1)*n

Vaishnavi COL703 - Lecture 23

Example program: Analysis

* First prove that for all m, n, p € N where p < m, it is the case that
(m,n, p)—{wl=(m, f(m,n, p), m), where
fimnp) =ms(Mm—1)*(Mm=2)*-*(p+2)*(p+1)*n

* Byinduction on m — p.

* Basecase:m —p = 0,i.e. m = pand f(m,n,p) =n. (mn,p) ¥ x >z,
so we have (m,n,p)—{w]—=(m,n,p).

* Induction case:m —p > 0,i.e.p <msop+1< m. ByIH,

(mnx(@P+1D,p+D—wl>(mf(mn=(p+1),p+1),m)

Vaishnavi COL703 - Lecture 23

Example program: Analysis (contd.)

* Whatisf(m,n#* (p+1),p+1)?

Vaishnavi COL703 - Lecture 23

Example program: Analysis (contd.)

* Whatis f(m,n = (p + 1), p + 1)? Nothing but f(m, n, p)

* So (m,nx (p+1),p+)—{wh>(m, f(m, n,p), m)

* Note that (m np)—z=z+Ly=yx*zlo(mn*x(p+1),p+1)
* So (m,n, p)—{w}=(m f(m,n, p), m)

In particular, (O, 0,0)—{x=my=1z=0]-+(m10),and
(m,1,0)—{w]—(m, f(m,1,0), m), where f(m,1,0) = m!

Vaishnavi COL703 - Lecture 23

Hoare triples

* Reasoning directly with the transitions of a program: complex

* Instead: reason about assertions that hold before and after a program
* Hoare triples {a} c{}
° cisacommand

® q, p first-order formulas involving expressions (arithmetic & Boolean)
° o is the precondition, {} is the postcondition of the triple

* Informally, {o} c {3} means that whenever c is run in a state satisfying
a, if it terminates, then the end state satisfies (.

* Partial correctness assertions: we do not require that c terminates

* Hoare logic gives us rules to reason about these triples directly

Vaishnavi COL703 - Lecture 23 November 11, 2024 14/19

Hoare logic rules

ki -
{a} skip {a} sap {a()} X = e{a(X)} Assign
{adc{p} {B}c {0} Fa'oa f{ajcfp} Epop
Seq Con
{a}ec' {o} o} c{p'}
{anb}c{p} {an-b}c{p} » {bAJc{ While

{a}if b then do celse ¢" end {[3} {} while b do c end {i A b}

We say that - {a} ¢ {B} if there is a proof of {a} ¢ {3} using these rules.

COL703 - Lecture 23

About the rules: Assign and While

* Assign: a(X) is an assertion in which program variable X possibly
occurs, and a(e) obtained by replacing all occurrences of X in a by e.

e If ais to be satisfied by X after X = 3, a should hold of 3 to begin with.
* Suppose a(X) asserts that X is odd. a true after X = 3; 3 is already odd.
* Thus a(3) is an adequate precondition for a(X).

* Same logic works even when e contains program identifiers (even X).

* While: is aloop invariant

* Aloop invariant is a property that, if it is true at the beginning of a loop
iteration, is re-established at the end of the iteration

* Loop invariants are critical to proving the correctness of programs

Vaishnavi COL703 - Lecture 23 November 11, 2024 16/19

Hoare logic

* AHoare triple {a}c {[3} is said to be valid (denoted F {a} ¢ {[3}) if for all
states s, s, if s F aand s—{c]—+s’, thens' E f.

* Having defined I- {a} c {[3} and k {a}c {[3}, what do we ask for next?

Vaishnavi COL703 - Lecture 23

Hoare logic

A Hoare triple {a} ¢ {ﬁ} is said to be valid (denoted F {a} ¢ {B}) if for all
states s, s, if s F aand s—{c]—+s’, thens' E f.

Having defined - {a} ¢ {B} and F {a} c{}, what do we ask for next?
Theorem (Soundness): If + {a} c{f}, then k {a} c{B}

Proof sketch: Proof is by induction on the structure of the proof.
Exercise: Show that Skip, Con, and Seq preserve validity.

Assign: Also easy, but a friendly old lemma is required!

If: Needs two cases, both work out thanks to IH

While: This is the only tough case that needs some analysis.

Vaishnavi COL703 - Lecture 23 November 11, 2024 17/19

Hoare logic: Soundness (While case)

* We show that for any n € N, and for any s, s’ sit. s F tand there is a
proof of s—[while b do c end]|—s" of size < n,we haves’ k1t A —=b.

* Consider a proof n of s—|while b do cend|—s" of size n.

* Suppose the above statement holds for all m < ng (Call this IH)
* Two cases arise now.
* s# bands = s': Easily done
* sk b,and there is some s” s.t. s—[c]—s" and there is a proof of
s" —[while b do c end}—s" of size < ny: Use TH and TH,, ¢

* Exercise: Fill in the details of this proof
* What next? Completeness

* Remember that we do not require termination

Vaishnavi COL703 - Lecture 23 November 11, 2024 18/19

Hoare logic: Completeness

Theorem (Weakest liberal precondition): For every assertion y and
command c, there is an assertion wlp(c, v) such that (1) for all states s, we
have that s F wip(c, v) iff for all states s, if s—|c|-—+s’, thens’ k y, and (2)

F {wip(c w)} c{v}.
Suppose we can prove the above theorem. Then we can prove completeness.

Theorem (Completeness): If k {¢} c{y}, then + {¢} c{v}.

Proof sketch: Suppose F {¢} c{y}. Use the (1) part of the above theorem to
show that F ¢ D wip(c, v). Then, use the (2) part of the above theorem to
apply the Con rule to get - {¢} c{w}. Exercise: Finish this proof

So now we need to prove the wlp theorem!

Vaishnavi COL703 - Lecture 23 November 11, 2024 19/19

