Lecture 22 - Incompleteness

Vaishnavi Sundararajan

COL703 - Logic for Computer Science

Recap

- Wanted to reduce truth to provability in our proof system
- What if I wanted to obtain every fact that is true of N?
- Consider all sentences true of the natural numbers: Th(N)
- Löwenheim-Skolem says: There is also an **uncountable** model which satisfies these sentences
- So Th(N) is satisfied by multiple models of various cardinalities.

So far...

- FO Completeness: every truth can be proven using $\vdash_{\mathcal{C}}$
- Every truth about groups can be derived using γ_{grps} as the hypothesis
- Can do this for all the γs that we saw
- We are often interested in specific structures
- What about ℝ? ℚ? ℕ?
- Is there some axiomatization of \overline{N} such that one can derive all truths about the naturals from it?
- Can I derive, for example, the following sentence?

∀*x*. [*P*(*x*) ∧ ∃*y*. [*x* ≡ 2 × *y*] ⊃ *P*(*y*)] ∧ ∀*x*. [*P*(*x*) ∧ ∃*y*. [*x* ≡ 2 × *y* + 1] ⊃ *P*(3 × *x* + 1)] ⊃ *P*(1)

Some history

- Sunday, the 7th of September, 1930, in a small conference on the foundations of mathematics in Königsberg
- Kurt Gödel presents his completeness result, from his PhD work
- Casually follows it up with a rather abstruse statement about consistency and provability of false statements.

*One can (under the assumption of the consistency of classical mathematics) even give examples of statements (and even such of the sort of Gold*bach's or Fermat's) which are conceptually correct but unprovable in the for*mal system of classical mathematics. Therefore, if one adjoins the negation of such a statement to the axioms of classicalmathematics, then one obtains a consistent system in which a conceptually false statement is provable.*

A semi-formal statement of incompleteness

Suppose *S* is an effectively axiomatized formal theory whose language contains the language of basic arithmetic. Then, if *S* is consistent, and can prove a certain amount of arithmetic, there will be a sentence κ of basic arithmetic such that ℕ ⊧ κ and *S* ⊬ κ

Context: Hilbert's programme

- Two formal theories of mathematics, *S* and *T*
- *S*: finite, meaningful statements, and "nice" methods of proof
- *T*: transfinite, idealized statements and methods
- Goal: Show that for any φ, if *T* ⊢ φ, then *S* ⊢ φ

Context: Hilbert's programme

- Two formal theories of mathematics, *S* and *T*
- *S*: finite, meaningful statements, and "nice" methods of proof
- *T*: transfinite, idealized statements and methods
- Goal: Show that for any φ, if *T* ⊢ φ, then *S* ⊢ φ using the methods in *S*
- Gödel showed that there is a true φ (so $T \vdash \varphi$) but $S \not\models \varphi$ for any "nice" *S*: **First Incompleteness**
- **Second Incompleteness** takes this a step further: There is a particular φ (namely, that *S* is consistent) which cannot be proved in *S*

Peano axioms PA

 $\Sigma = (\{0\}, \{s/1, +/2, \times/2\}, \emptyset)$

- $(A1)$ ∀*x*. $[¬(0 ≡ s(x))]$
- (*A*2) ∀*x*. [∀*y*. [(*s*(*x*) ≡ *s*(*y*)) ⊃ (*x* ≡ *y*)]]
- (*A*3) ∀*x*. [*x* + 0 ≡ *x*]
- (*A*4) ∀*x*. [∀*y*. [*x* + *s*(*y*) ≡ *s*(*x* + *y*)]]

$$
(A5) \quad \forall x. \ [x \times 0 \equiv 0]
$$

- (*A*6) ∀*x*. [∀*y*. [(*x* × *s*(*y*)) ≡ *x* + (*x* × *y*)]]
- (*A*7φ) φ(0) ⊃ ∀*x*. [φ(*x*) ⊃ φ(*s*(*x*))] ⊃ ∀*x*. [φ(*x*)]
- Infinite; one $(A7_{\varphi})$ for every formula $\varphi \in FO_{\Sigma}$ with one free variable
- We say PA $\vdash \alpha$ iff there is a proof of α using the above system and \vdash_{HF}
- PA $\vdash \alpha$ implies $\mathbb{N} \models \alpha$

Proof sketch

- **Incompleteness Theorem (Gödel, 1931)**: No recursive, consistent extension of PA is complete.
- No "nice" axiom system is adequate to prove all truths about N
- Gödel's original idea: Provability in PA is programmable! Truth is not.
- So $\{\varphi \mid PA \vdash \varphi\} \neq \{\varphi \mid \mathbb{N} \models \varphi\}$
- Gödel showed the former is definable by an expression, not the latter
- How can an expression in arithmetic define a set of expressions?
- Arithmetization: Code all formulas as numbers.
- Any expression defines some property over numbers, so we good!

Proof details

- $n \in \mathbb{N}$ represented by \overline{n} in $T(\Sigma)$ (nothing but s applied *n* times to o)
- Everything in the logical language appears in sans-serif blue
- The proof system PA and natural numbers appear in *brown*
- What does it mean for an expression to be definable in this language?
- When is a *k*-ary relation *R* ⊆ ℕ*^k* over the naturals definable?
- Iff there is a formula φ_R with *k* free variables such that for all $n_1, n_2, ..., n_k \in \mathbb{N}$, we have $(n_1, n_2, ..., n_k) \in R$ iff $\mathbb{N} \models \varphi_R(\overline{n_1}, \overline{n_2}, ..., \overline{n_k})$
- Similarly, a function *f* ∶ ℕ*^k* → ℕ is definable iff there is a formula φ*^f* with $k + 1$ free variables such that for all $n_1, n_2, ..., n_k, m \in \mathbb{N}$, we have $f(n_1, n_2, ..., n_k) = m$ iff $\mathbb{N} \models \varphi_f(\overline{n_1}, \overline{n_2}, ..., \overline{n_k}, \overline{m})$

Proof details: Arithmetization

- A **Gödel-numbering scheme** is some effective way of coding up expressions in PA (and sequences thereof) as natural numbers
- Given a Gödel-numbering scheme, the code for an expression (or a sequence thereof) is its unique **Gödel number** (in **bold purple**)
- There is a Gödel-numbering scheme for PA
- Can decide:
	- whether an expression is well-formed and whether it is a sentence
	- whether a given **n** codes up a well-formed expression or a sentence
- We denote by $\delta_{\bf n}$ the expression coded up by ${\bf n}$

Proof details: Gödel numbering

- How exactly does one assign Gödel numbers?
- Arbitrary coding for basic building blocks (variables and symbols in Σ)
- Extend to sequences of symbols/terms/expressions using exponentiation and primes, using the following lemma
- **Gödel's** β**-function lemma**: There is a PA-definable function $\beta : \mathbb{N}^3 \to \mathbb{N}$ s.t. for every $n \geqslant 0$ and every sequence $a_0 \dots a_{n-1}$, there are $c, d \in \mathbb{N}$ s.t. for all $i < n$, $a_i = \beta(c, d, i)$.
- One can then define the following predicates:
	- Seq (\overline{m}) : **m** codes a sequence of numbers
	- Len $(\overline{m}, \overline{n})$: **m** codes a sequence of length *n*
	- Elem $(\overline{m}, \overline{i}, \overline{n})$: **m** codes a sequence whose ith element is *n*

About proof in PA

- There is a wff Proof(*x*, *y*) in the language of basic arithmetic such that Proof(\mathbf{m}, \mathbf{n}) is true iff \mathbf{m} codes up a PA-proof of $\delta_{\mathbf{n}}$
- What is a proof in **PA?**

About proof in PA

- There is a wff Proof(*x*, *y*) in the language of basic arithmetic such that Proof(\mathbf{m}, \mathbf{n}) is true iff **m** codes up a PA-proof of $\delta_{\mathbf{n}}$
- What is a proof in PA? A sequence of expressions such that each expression is either an axiom (either of FO or of PA) or follows from some earlier expression(s) using a proof rule.
- Each expression in this sequence has its own Gödel number
- Different elements of sequence are related to each other using Elem
- Predicate ValidProof(x) says that x is a sequence (via Seq) and captures the above two statements.
- Predicate to say that *x* is a proof of *y*:

Proof(x, y) $:=$ ValidProof(x) ∧ $\exists k$. [Len(x, k) ∧ Elem (x, k, y)]

Provability ≠ **truth**

- Provability: $Prov(y) \coloneqq \exists x$. [$Proof(x, y)$]. $\mathbb{N} \models Prov(m)$ iff $PA \vdash \delta_m$
- We will now show that there is no corresponding truth predicate True(x) s.t. $\mathbb{N} \models \text{True}(\overline{m})$ iff $\mathbb{N} \models \delta_m$
- Define Diag (x, y) s.t. $\mathbb{N} \models \text{Diag}(\overline{m}, \overline{p})$ iff $\delta_{\mathbf{m}} {\overline{m}}/v_0 = \delta_{\mathbf{p}}$ (where v_0 is the first variable in our enumeration of variables)
- Suppose there is a truth predicate True(*x*)
- Then, we can define $\psi(v_0) \coloneqq \exists x$. [Diag $(v_0, x) \land \neg \text{True}(x)$]
- Let *d* be such that $\psi = \delta_d$. Let $\kappa \coloneqq \psi(d)$, and let *h* be such that $\kappa = \delta_h$.
- **Exercise**: Prove that ℕ ⊧ ∀*y*. $\left[Diag\left(\overline{d}, y\right) \leftrightarrow \left(y \equiv \overline{h}\right)\right]$
- Now, apply a usual diagonalization argument, to get a contradiction.

Provability ≠ **truth: Diagonalization**

ℕ ⊧ κ iff $N \models \psi(\overline{d})$ iff N ⊧ ∃*x*. $\left[Diag\left(\overline{d}, x\right) \wedge \neg True(x)\right]$ iff $N \models \neg True(\overline{h})$ **Exercise** ∶ Verify this iff iff $N \not\models True(\overline{h})$ iff $\mathbb{N} \not\models \delta_{\mathbf{h}}$ iff ℕ ⊭ κ

About the choice of system

- There are more truths than provable expressions
- These truths are not "unprovable at all"; just **unprovable in** PA
- What if we add some of these truths as extra axioms into PA?
- Suppose we get PA' by doing this
- PA' is still "nice", because provability in PA' is still definable in arithmetic
- So repeat the same argument, and show that PA' is also incomplete!
- Less an incomplete**ness** theorem, more an incomplet**ability** theorem