Lecture 21 - More About First-Order Theories

Vaishnavi Sundararajan

COL703 - Logic for Computer Science

Recap

- Looked at a few theories of "common" constructions
- Groups, fields, orders...
- Saw that one can define formulae which characterize subclasses of these constructions (groups with no elements of order 2 etc)
- Captured the < relation as a formula with two free variables in (R, +, ×, 0)
- Saw that < **cannot** be captured in (\mathbb{R} , +, 0)
- Used an automorphism to show this

Elementary classes

- We showed that < is not definable using the signature without ×
- But we also defined entire classes of groups, fields etc via FO formulas
- How to show if an entire class of models is characterizable using FO?
- For a set X of Σ -sentences, we define

Mod $X \coloneqq \{\mathcal{M} \mid \mathcal{M} \text{ is a } \Sigma \text{-structure, and } \mathcal{M} \models X\}$

- Let \mathscr{C} be a class of Σ -structures. \mathscr{C} is said to be
 - **elementary** if there is a $\varphi \in FO_{\Sigma}$ such that $\mathscr{C} = Mod \{\varphi\}$
 - Δ -elementary if there is a set $X \subseteq FO_{\Sigma}$ such that $\mathscr{C} = Mod X$.
- **Elementary**: An FO sentence φ captures the exact class of models

3/14

Examples

• The class \mathscr{C}_{grps} of groups is elementary.

Examples

- The class \mathscr{C}_{grps} of groups is elementary. $\mathscr{C}_{grp} = Mod \gamma_{grps}$
- Classes of equivalence relations, orders, and fields also elementary
- Let *p* be a prime. A field *F* has **characteristic** *p* if $\underbrace{1 + \dots + 1}_{p \text{ times}} = 0$. If there is no such *p*, then *F* has characteristic 0.
- The field \mathbb{R} of real numbers has characteristic **0**.
- Let $\chi_p := \underbrace{1 + \dots + 1}_{p \text{ times}} \equiv 0$
- The class of fields of characteristic **p** is Mod $(\gamma_{\text{flds}} \land \chi_p)$
- The class \mathscr{C} of fields of characteristic **0** is Δ -elementary
- $\mathscr{C} = \text{Mod} \{\gamma_{\text{flds}}\} \cup \{\neg \chi_p \mid p \text{ is a prime}\}$
- Is % elementary?

Examples

- The class \mathscr{C}_{grps} of groups is elementary. $\mathscr{C}_{grp} = Mod \gamma_{grps}$
- Classes of equivalence relations, orders, and fields also elementary
- Let *p* be a prime. A field *F* has **characteristic** *p* if $\underbrace{1 + \dots + 1}_{p \text{ times}} = 0$. If there is no such *p*, then *F* has characteristic 0.
- The field **R** of real numbers has characteristic **0**.
- Let $\chi_p := \underbrace{1 + \dots + 1}_{p \text{ times}} \equiv 0$
- The class of fields of characteristic **p** is Mod $(\gamma_{\text{flds}} \land \chi_p)$
- The class *°*6 of fields of characteristic 0 is △-elementary
- $\mathscr{C} = Mod \{\gamma_{flds}\} \cup \{\neg \chi_p \mid p \text{ is a prime}\}$
- Is % elementary? We can use Compactness to show that it is **not**.

Compactness theorem

- **Compactness Theorem**: A set Γ of FO sentences is satisfiable iff every finite subset of Γ is satisfiable.
- **Proof**: Suppose Γ satisfiable. Then all finite subsets of Γ also satisfiable.
- Now suppose that Γ is not satisfiable. We know that every consistent set is satisfiable. So Γ is not consistent.
- So there is some $\{\varphi_1, ..., \varphi_n\} \subseteq_{\text{fin}} \Gamma$ such that $\vdash \neg(\varphi_1 \land ... \land \varphi_n)$
- But by Soundness, $\models \neg(\varphi_1 \land \dots \land \varphi_n)$
- So there is a finite subset of **Γ** that is unsatisfiable.

Compactness: Application

- Let φ be a sentence which holds in all fields of characteristic 0
- So { γ_{flds} } \cup { $\neg \chi_p \mid p \text{ is a prime}$ } $\models \varphi$
- Compactness tells us that there is some n_0 such that $\{\gamma_{\text{flds}}\} \cup \{\neg \chi_p \mid p \text{ is a prime, } p < n_0\} \models \varphi$
- Hence, φ is valid in all fields of characteristic $\ge n_0!$
- So, a sentence which is valid in all fields of characteristic **0** is also valid in all fields with a "sufficiently large" characteristic.
- So the class of fields with characteristic 0 is **not** elementary

Elementary equivalence

- So far, we saw some classes of structures that FOL can characterize
- What about which classes can be distinguished via FOL sentences?
- When are two structures **not** distinguishable?
- When they satisfy the same sentences
- Two Σ -structures \mathcal{M} and \mathcal{M}' are said to be **elementarily-equivalent** (denoted $\mathcal{M} \bowtie \mathcal{M}'$) if for every sentence $\varphi \in FO_{\Sigma}, \mathcal{M} \models \varphi$ iff $\mathcal{M}' \models \varphi$
- For a Σ-structure *M*, the **theory** of *M* is the set of sentences it satisfies: Th(*M*) = {φ | *M* ⊧ φ}.
- **Theorem**: For two Σ -structures \mathcal{M} and $\mathcal{M}', \mathcal{M} \bowtie \mathcal{M}'$ iff $\mathcal{M}' \models \text{Th}(\mathcal{M})$.
- **Exercise**: Prove this statement.

Elementary equivalence

- Clear that any two isomorphic structures are elementarily-equivalent.
- Are any two elementarily-equivalent structures also isomorphic?
- Can we say something about the class of structures that are all elementarily-equivalent to a particular *M*?
- Theorem: For any M, C = {M' | M ⋈ M'} = Mod Th(M) is
 Δ-elementary. C is the smallest Δ-elementary class which contains M.
- Exercise: Prove this!
- Is the class of all structures isomorphic to \mathcal{M} also Δ -elementary?
- Does the cardinality of *M* influence the answer?
- Suppose I have an uncountable \mathcal{M} (over a countable Σ)
- What can I say about all structures elementarily-equivalent to *M*?

Downward Löwenheim-Skolem theorem

- (Downward) Löwenheim-Skolem Theorem: If a set Γ of sentences over a countable Σ is satisfiable, it is satisfied by a countable model
- **Proof**: Consider a satisfiable set **Γ** of FO sentences over a countable **Σ**.
- Γ is consistent. **Exercise**: Prove this!
- For Completeness, we built a model whose elements were equivalence classes of terms of the language
- What is the cardinality of $T(\Sigma)$ for a countable Σ ?

Downward Löwenheim-Skolem theorem

- (Downward) Löwenheim-Skolem Theorem: If a set Γ of sentences over a countable Σ is satisfiable, it is satisfied by a countable model
- **Proof**: Consider a satisfiable set **Γ** of FO sentences over a countable **Σ**.
- Γ is consistent. **Exercise**: Prove this!
- For Completeness, we built a model whose elements were equivalence classes of terms of the language
- What is the cardinality of $T(\Sigma)$ for a countable Σ ?
- How many equivalence classes can there be over a countable set?

Downward Löwenheim-Skolem theorem

- (Downward) Löwenheim-Skolem Theorem: If a set Γ of sentences over a countable Σ is satisfiable, it is satisfied by a countable model
- **Proof**: Consider a satisfiable set Γ of FO sentences over a countable Σ .
- Γ is consistent. **Exercise**: Prove this!
- For Completeness, we built a model whose elements were equivalence classes of terms of the language
- What is the cardinality of $T(\Sigma)$ for a countable Σ ?
- How many equivalence classes can there be over a countable set?
- At most countably many
- Thus, every satisfiable set of sentences (over a countable signature) is consistent, and satisfiable in a countable model!

9/14

Downward L-S: Application

Theorem: Let Σ be countable, and $X \in FO_{\Sigma}$ be a set of sentences which has arbitrarily large finite models (i.e. for every $n \in \mathbb{N}$ there is a model for X with cardinality at least n). Then, X is satisfied by a countably infinite model.

Proof: Recall
$$\varphi_{\geq n} = \exists x_1$$
. $\left[\exists x_2. \left[... \exists x_n. \left[\bigwedge_{1 \leq i < j \leq n} \neg (x_i \equiv x_j) \right] ... \right] \right]$.

Define $Y \coloneqq X \cup \{\varphi_{\geq m} \mid m \geq 2\}$

Every model of **Y** is infinite, and also a model of **X**.

Exercise: Is there even one such?

So \underline{Y} (and consequently \underline{X}) is satisfied by a countably infinite model, by downward L-S.

Upward Löwenheim-Skolem theorem

- (Upward) Löwenheim-Skolem Theorem: If a set Γ ⊆ FO_Σ is satisfied by an infinite model, then, for any set *A*, there is a model for Γ which has at least as many elements as *A*.
- Proof: For each a ∈ A, let c_a ∉ C be a new constant such that c_a ≠ c_b for distinct a, b ∈ A. Let Σ' = (C ∪ {c_a | a ∈ A}, F, P).
- Let $G \coloneqq \Gamma \cup \{\neg (c_a \equiv c_b) \mid a, b \in A, a \neq b\} \subseteq FO_{\Sigma'}$. Suppose $\mathcal{I} \models G$.
- *I* is also a model for Γ
- Clear that $\mathcal{I}(c_a) \neq \mathcal{I}(c_b)$ (since $\mathcal{I} \models \neg(c_a \equiv c_b)$ for distinct $a, b \in A$)
- Then, {(a, 𝓕(a)) | a ∈ A} is an injective map from A to the domain of 𝓕, and so the model 𝓕 for G has at least as many elements as A.
- **Exercise**: Show that **G** is satisfiable.

Löwenheim-Skolem theorem

- By Downward L-S, an uncountable *M* has an elementarily-equivalent countable *M*'
- \mathcal{M} and \mathcal{M}' are clearly not isomorphic
- So elementary equivalence and isomorphism do not coincide
- The class of all structures isomorphic to \mathcal{M} is **not** Δ -elementary
- By Upward L-S, a countable *M* has an elementarily-equivalent uncountable *M*'

So why did we do all this?

- Recall that we wanted to reduce truth to provability in our proof system
- Common enough setting: natural numbers
- What if I wanted to obtain every fact that is true about №?
- Consider all sentences true of the natural numbers: $Th(\mathbb{N})$
- There is also an **uncountable** model which satisfies these sentences!
- So Th(N) is satisfied by multiple models of various cardinalities.
- But do we need Th(N) to have exactly one model?

So why did we do all this?

- Recall that we wanted to reduce truth to provability in our proof system
- Common enough setting: natural numbers
- What if I wanted to obtain every fact that is true about №?
- Consider all sentences true of the natural numbers: $Th(\mathbb{N})$
- There is also an **uncountable** model which satisfies these sentences!
- So Th(N) is satisfied by multiple models of various cardinalities.
- But do we need Th(ℕ) to have exactly one model? Not necessarily
- All we want is a "nice" set of axioms $\Gamma_{\mathbb{N}}$ such that $\varphi \in \text{Th}(\mathbb{N})$ iff $\Gamma_{\mathbb{N}} \vdash_{\mathscr{G}} \varphi$

So why did we do all this?

- Recall that we wanted to reduce truth to provability in our proof system
- Common enough setting: natural numbers
- What if I wanted to obtain every fact that is true about №?
- Consider all sentences true of the natural numbers: $Th(\mathbb{N})$
- There is also an **uncountable** model which satisfies these sentences!
- So Th(N) is satisfied by multiple models of various cardinalities.
- But do we need Th(ℕ) to have exactly one model? Not necessarily
- All we want is a "nice" set of axioms $\Gamma_{\mathbb{N}}$ such that $\varphi \in \text{Th}(\mathbb{N})$ iff $\Gamma_{\mathbb{N}} \vdash_{\mathscr{G}} \varphi$
- But Gödel's incompleteness theorem says that **no such** $\Gamma_{\mathbb{N}}$ **exists**.

Quiz