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Recap

• Looked at a few theories of “common” constructions

• Groups, fields, orders...

• Saw that one can define formulae which characterize subclasses of
these constructions (groups with no elements of order 2 etc)

• Captured the< relation as a formula with two free variables in
(ℝ,+, ×,0)

• Saw that< cannot be captured in (ℝ,+,0)
• Used an automorphism to show this
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Elementary classes

• We showed that< is not definable using the signature without×

• But we also defined entire classes of groups, fields etc via FO formulas

• How to show if an entire class of models is characterizable using FO?

• For a set X of Σ-sentences, we define

Mod X≔ �ℳ �ℳ is a Σ-structure, andℳ ⊧ X�

• Let𝒞 be a class of Σ-structures. 𝒞 is said to be
• elementary if there is a φ ∊ FOΣ such that𝒞 =Mod {φ}
• Δ-elementary if there is a set X ⊆ FOΣ such that𝒞 =Mod X.

• Elementary: An FO sentence φ captures the exact class of models
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Examples

• The class𝒞grps of groups is elementary.

𝒞grp =Mod γgrps
• Classes of equivalence relations, orders, and fields also elementary

• Let p be a prime. A field F has characteristic p if 1+⋯+ 1�������

p times
= 0. If

there is no such p, then F has characteristic 0.

• The fieldℝ of real numbers has characteristic 0.

• Let χp ≔ 1+⋯+ 1�������

p times
≡ 0

• The class of fields of characteristic p is Mod (γflds ∧ χp)

• The class𝒞 of fields of characteristic 0 is Δ-elementary

• 𝒞 =Mod {γflds} ∪ {¬χp � p is a prime}

• Is𝒞 elementary? We can use Compactness to show that it is not.
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Compactness theorem

• Compactness Theorem: A set Γ of FO sentences is satisfiable iff every
finite subset of Γ is satisfiable.

• Proof: Suppose Γ satisfiable. Then all finite subsets of Γ also satisfiable.
• Now suppose that Γ is not satisfiable. We know that every consistent
set is satisfiable. So Γ is not consistent.

• So there is some {φ1, … ,φn} ⊆fin Γ such that ⊢ ¬(φ1 ∧ … ∧ φn)

• But by Soundness, ⊧ ¬(φ1 ∧ ⋯ ∧ φn)

• So there is a finite subset of Γ that is unsatisfiable.
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Compactness: Application

• Let φ be a sentence which holds in all fields of characteristic 0

• So {γflds} ∪ {¬χp � p is a prime} ⊧ φ

• Compactness tells us that there is some n0 such that
{γflds} ∪ {¬χp � p is a prime, p < n0} ⊧ φ

• Hence, φ is valid in all fields of characteristic⩾ n0!

• So, a sentence which is valid in all fields of characteristic 0 is also valid
in all fields with a “sufficiently large” characteristic.

• So the class of fields with characteristic 0 is not elementary
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Elementary equivalence

• So far, we saw some classes of structures that FOL can characterize

• What about which classes can be distinguished via FOL sentences?

• When are two structures not distinguishable?
• When they satisfy the same sentences

• Two Σ-structuresℳ andℳ′ are said to be elementarily-equivalent
(denotedℳ ⋈ℳ′) if for every sentence φ ∊ FOΣ,ℳ ⊧ φ iffℳ′ ⊧ φ

• For a Σ-structureℳ, the theory ofℳ is the set of sentences it satisfies:
Th(ℳ) = {φ ∣ℳ ⊧ φ}.

• Theorem: For two Σ-structuresℳ andℳ′,ℳ ⋈ℳ′ iffℳ′ ⊧ Th(ℳ).

• Exercise: Prove this statement.

Vaishnavi COL703 - Lecture 21 November 4, 2024 7 / 14



Elementary equivalence

• Clear that any two isomorphic structures are elementarily-equivalent.

• Are any two elementarily-equivalent structures also isomorphic?

• Can we say something about the class of structures that are all
elementarily-equivalent to a particularℳ?

• Theorem: For anyℳ,𝒞 = {ℳ′ ∣ℳ ⋈ℳ′} =Mod Th(ℳ) is
Δ-elementary. 𝒞 is the smallest Δ-elementary class which containsℳ.

• Exercise: Prove this!
• Is the class of all structures isomorphic toℳ also Δ-elementary?

• Does the cardinality ofℳ influence the answer?

• Suppose I have an uncountableℳ (over a countable Σ)

• What can I say about all structures elementarily-equivalent toℳ?
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Downward Löwenheim-Skolem theorem

• (Downward) Löwenheim-SkolemTheorem: If a set Γ of sentences
over a countable Σ is satisfiable, it is satisfied by a countable model

• Proof: Consider a satisfiable set Γ of FO sentences over a countable Σ.
• Γ is consistent. Exercise: Prove this!
• For Completeness, we built a model whose elements were equivalence
classes of terms of the language

• What is the cardinality of Τ(Σ) for a countable Σ?

• Howmany equivalence classes can there be over a countable set?

• At most countably many

• Thus, every satisfiable set of sentences (over a countable signature) is
consistent, and satisfiable in a countable model!
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Downward L-S: Application

Theorem: Let Σ be countable, and X ∊ FOΣ be a set of sentences which has
arbitrarily large finite models (i.e. for every n ∊ ℕ there is a model for Xwith
cardinality at least n). Then, X is satisfied by a countably infinite model.

Proof: Recall φ⩾n = ∃x1. �∃x2. �… ∃xn. �⋀1⩽i<j⩽n¬(xi ≡ xj)�…��.

Define Y≔ X ∪ {φ⩾m ∣ m ⩾ 2}

Every model of Y is infinite, and also a model of X.
Exercise: Is there even one such?
So Y (and consequently X) is satisfied by a countably infinite model, by
downward L-S.
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Upward Löwenheim-Skolem theorem

• (Upward) Löwenheim-SkolemTheorem: If a set Γ ⊆ FOΣ is satisfied
by an infinite model, then, for any set A, there is a model for Γwhich
has at least as many elements as A.

• Proof: For each a ∊ A, let ca ∉ 𝒞 be a new constant such that ca ≠ cb for
distinct a, b ∊ A. Let Σ′ = (𝒞 ∪ {ca ∣ a ∊ A},ℱ,𝒫).

• Let G≔ Γ ∪ {¬(ca ≡ cb) ∣ a, b ∊ A, a ≠ b} ⊆ FOΣ′ . Suppose ℐ ⊧ G.

• ℐ is also a model for Γ

• Clear that ℐ(ca) ≠ ℐ(cb) (since ℐ ⊧ ¬(ca ≡ cb) for distinct a, b ∊ A)

• Then, {(a,ℐ(a)) ∣ a ∊ A} is an injective map from A to the domain of ℐ,
and so the model ℐ for G has at least as many elements as A.

• Exercise: Show that G is satisfiable.
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Löwenheim-Skolem theorem

• By Downward L-S, an uncountableℳ has an elementarily-equivalent
countableℳ′

• ℳ andℳ′ are clearly not isomorphic

• So elementary equivalence and isomorphism do not coincide

• The class of all structures isomorphic toℳ is not Δ-elementary
• By Upward L-S, a countableℳ has an elementarily-equivalent
uncountableℳ′
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So why did we do all this?

• Recall that we wanted to reduce truth to provability in our proof system

• Common enough setting: natural numbers

• What if I wanted to obtain every fact that is true aboutℕ?

• Consider all sentences true of the natural numbers: Th(ℕ)

• There is also an uncountablemodel which satisfies these sentences!
• So Th(ℕ) is satisfied by multiple models of various cardinalities.

• But do we need Th(ℕ) to have exactly one model?

Not necessarily

• All we want is a “nice” set of axioms Γℕ such that φ ∊ Th(ℕ) iff Γℕ ⊢𝒢 φ

• But Gödel’s incompleteness theorem says that no such Γℕ exists.
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Quiz
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