Lecture 20 - First-Order Theories

Vaishnavi Sundararajan

COL703 - Logic for Computer Science

Recap: Natural deduction and intuitionistic logic

- Natural deduction proof system for propositional fragment
- More closely mirrors human reasoning, better for automation
- Negation creates complications!
- Easier if we move to a constructive logic: intuitionistic logic
- No law of excluded middle, actually makes proof search easeir!
- Can "normalize" proofs; every proof has a normal equivalent
- Normal proofs of $\Gamma \vdash \varphi$ only mention subformulas of Γ and φ
- Yields an algorithm for proof search
- Full FO proof search undecidable; set of subformulas is itself infinite!
- Theorem provers use heuristics to get around this as much as possible

Formalizations in FOL

- How much of the world can we talk about using FOL?
- Today we will look at some familiar objects described using FOL
- Recall that we could axiomatize groups using FOL
- The following sentences characterize groups.

∀*x*. [∀*y*. [∀*z*. [*f*(*f*(*x*, *y*),*z*) ≡ *f*(*x*, *f*(*y*,*z*))]]] (G1) $\forall x. [f(x, \varepsilon) \equiv x]$ (G2) $∀x. [∃y. [f(x, y) ≡ ε]]$ (G3)

- $\gamma_{\text{grps}} \coloneqq G1 \wedge G2 \wedge G3$ $\gamma_{\text{grps}} \coloneqq G1 \wedge G2 \wedge G3$ $\gamma_{\text{grps}} \coloneqq G1 \wedge G2 \wedge G3$ axiomatizes all groups.
- Any structure $M = (M, \iota)$ which is a model for $(G1)$ $(G1)$ $(G1)$ – $(G3)$ defines a group over *M* with group operation *f* and identity ε

Groups

- In any group, the **cancellation law** holds.
- Consider a group *G* with operation ∘. The cancellation law states that for any *x*, *y*, *z* \in *G*, if $x \circ z = y \circ z$, then $x = y$. Can we state this in FO?

Groups

- In any group, the **cancellation law** holds.
- Consider a group *G* with operation ∘. The cancellation law states that for any *x*, *y*, *z* \in *G*, if $x \circ z = y \circ z$, then $x = y$. Can we state this in FO?

$$
\varphi_c := \forall x. \; [\forall y. \; [\forall z. \; [f(x, z) \equiv f(y, z) \supset x \equiv y]]]
$$

- **Exercise**: Show that *[G](#page-2-2)*1, *G*2, *G*3 ⊢ φ
- *g* ∊ *G* such that *g* ≠ 0 and *g*������� ∘ *g* ∘ … ∘ *g* = 0 is said to be of order *n n* times
- We will write an interpreted structure as the domain along with the interpreted symbols (here Σ = ({ε}, {*f*}, ∅) and ι(ε) = 0 and ι(*f*) = ∘)
- Is there a ψ such that, if $(G, \circ, 0) \models \gamma_{\text{grps}}$ and $(G, \circ, 0) \models \psi$, then $(G, \circ, 0)$ is a group with no elements of order 2?

Groups

- In any group, the **cancellation law** holds.
- Consider a group *G* with operation ∘. The cancellation law states that for any *x*, *y*, *z* \in *G*, if $x \circ z = y \circ z$, then $x = y$. Can we state this in FO?

$$
\varphi_c := \forall x. \; [\forall y. \; [\forall z. \; [f(x, z) \equiv f(y, z) \supset x \equiv y]]]
$$

- **Exercise**: Show that *[G](#page-2-2)*1, *G*2, *G*3 ⊢ φ
- *g* ∊ *G* such that *g* ≠ 0 and *g*������� ∘ *g* ∘ … ∘ *g* = 0 is said to be of order *n n* times
- We will write an interpreted structure as the domain along with the interpreted symbols (here Σ = ({ε}, {*f*}, ∅) and ι(ε) = 0 and ι(*f*) = ∘)
- Is there a ψ such that, if $(G, \circ, 0) \models \gamma_{\text{grps}}$ and $(G, \circ, 0) \models \psi$, then $(G, \circ, 0)$ is a group with no elements of order 2?

$$
\psi := \neg \exists x. \; [\neg(x \equiv \varepsilon) \land f(x, x) \equiv \varepsilon]
$$

Equivalence relations

- An equivalence relation is reflexive, symmetric, and transitive.
- Suppose we have a binary relation symbol $R \in \mathcal{P}$
- • Can force *R* to be interpreted as an equivalence relation by ensuring that any structure satisfies the following sentences

Equivalence relations

- An equivalence relation is reflexive, symmetric, and transitive.
- Suppose we have a binary relation symbol $R \in \mathcal{P}$
- Can force *R* to be interpreted as an equivalence relation by ensuring that any structure satisfies the following sentences

$$
\forall x. \ [R(x, x)] \tag{Eq1}
$$

$$
\forall x. \ [\forall y. \ [R(x, y) \supset R(y, x)]] \tag{Eq2}
$$

∀*x*. [∀*y*. [∀*z*. [*R*(*x*, *y*) ∧ *R*(*y*,*z*) ⊃ *R*(*x*,*z*)]]] (Eq3)

- γeqrel ≔ *[Eq](#page-6-0)*1 ∧ *[Eq](#page-6-1)*2 ∧ *[Eq](#page-6-2)*3 characterizes all equivalence relations *R*.
- **Exercise**: What if we wanted **R** to be interpreted as a congruence?

Equivalence relations (contd.)

- Let $\Sigma = \emptyset$, \emptyset , $\{R/2\}$
- *R* is an equivalence relation with at least two equivalence classes

Equivalence relations (contd.)

- Let $\Sigma = \emptyset$, \emptyset , $\{R/2\}$
- *R* is an equivalence relation with at least two equivalence classes

γeqrel ∧ ∃*x*. [∃*y*. [¬*R*(*x*, *y*)]]

• *R* is an equivalence relation with an equivalence class containing more than one element

Equivalence relations (contd.)

- Let $\Sigma = \emptyset$, \emptyset , $\{R/2\}$
- *R* is an equivalence relation with at least two equivalence classes

γeqrel ∧ ∃*x*. [∃*y*. [¬*R*(*x*, *y*)]]

• *R* is an equivalence relation with an equivalence class containing more than one element

 $γ_{\text{eorel}}$ Λ ∃*x*. $[∃y$. $[¬(x \equiv y) ∧ R(x, y)]$]

Orders

- A **total order** over a set is a binary relation < (written in infix) which
	- is irreflexive and transitive, and
	- any two distinct elements in the set are related by \lt
- • Can we axiomatize total orders in FOL?

Orders

- A **total order** over a set is a binary relation < (written in infix) which
	- is irreflexive and transitive, and
	- any two distinct elements in the set are related by \lt
- Can we axiomatize total orders in FOL?

$\forall x. \left[\neg(x < x) \right]$	(TO1)
$\forall x. \left[\forall y. \left[\forall z. \left[x < y \land y < z \supset x < z \right] \right] \right]$	(TO2)
$\forall x. \left[\forall y. \left[x < y \lor x \equiv y \lor y < x \right] \right]$	(TO3)

- $\gamma_{\text{to}} \coloneqq T01 \land T02 \land T03$ characterizes all total orders.
- **Exercise**: Axiomatize a partial order ≤ (Partial orders are reflexive, antisymmetric, and transitive)

Fields

- A field is a structure $(F, \circ, *, 0, 1)$ where $1 \neq 0$ and
	- (*F*, ∘, 0) is a group where ∘ is commutative
	- ∗ is an associative commutative operation over *F* with identity 1
	- every element other than 0 has a right-inverse wrt ∗
	- ∗ distributes over ∘

Fields

- A field is a structure $(F, \circ, *, 0, 1)$ where $1 \neq 0$ and
	- (*F*, ∘, 0) is a group where ∘ is commutative
	- ∗ is an associative commutative operation over *F* with identity 1
	- every element other than 0 has a right-inverse wrt ∗
	- ∗ distributes over ∘
- A field is axiomatized by $\gamma_{\text{flds}} := \gamma_{\text{grps}} \wedge$ ¬(ε[∘] ≡ ε[∗]) ∧ ∀*x*. [∀*y*. [*x* ∘ *y* ≡ *y* ∘ *x*]] ∧ ∀*x*. [∀*y*. [*x* ∗ *y* ≡ *y* ∗ *x*]] ∀*x*. [*x* ∗ ε[∗] ≡ *x*] ∧ ∀*x*. [∀*y*. [∀*z*. [*x* ∗ (*y* ∗ *z*) ≡ (*x* ∗ *y*) ∗ *z*]]] ∧ ∀*x*. [(*x* ≡ ε[∘]) ∨ ∃*y*. [*x* ∗ *y* ≡ ε[∗]]] ∧ ∀*x*. [∀*y*. [∀*z*. [*x* ∗ (*y* ∘ *z*) ≡ (*x* ∗ *y*) ∘ (*x* ∗ *z*)]]]

Characterizing sizes of structures

- Recall ∃*x*₁. [∃*x*₂. [… ∃*x*_n. [∀*y*. [*y* ≡ *x*₁ ∨ *y* ≡ *x*₂ ∨ … ∨ *y* ≡ *x*_n]] …]]
- Which structures satisfy this sentence (call it $\varphi_{\leq n}$)?
- What about ∃*x*. [∃*y*. [¬(*x* ≡ *y*)]]?

Characterizing sizes of structures

- Recall ∃*x*₁. [∃*x*₂. [… ∃*x*_n. [∀*y*. [*y* ≡ *x*₁ ∨ *y* ≡ *x*₂ ∨ … ∨ *y* ≡ *x*_n]] …]]
- Which structures satisfy this sentence (call it $\varphi_{\leq n}$)?
- What about ∃*x*. [∃*y*. [¬(*x* ≡ *y*)]]?
- All structures with at least two distinct elements. Call this $\varphi_{\geq 2}$.
- Can we write a φ_{≥n}?

Characterizing sizes of structures

- Recall ∃*x*₁. [∃*x*₂. [… ∃*x*_n. [∀*y*. [*y* ≡ *x*₁ ∨ *y* ≡ *x*₂ ∨ … ∨ *y* ≡ *x*_n]] …]]
- Which structures satisfy this sentence (call it $\varphi_{\leq n}$)?
- What about ∃*x*. [∃*y*. [¬(*x* ≡ *y*)]]?
- All structures with at least two distinct elements. Call this $\varphi_{\geq 2}$.
- Can we write a φ_{≥n}?
- $\exists x_1$. $\left| \exists x_2$. $\right| ... \exists x_n$. $\left| \bigwedge_{1 \leq i \leq j \leq n} \neg (x_i \equiv x_j) \right| ...$
- What about $\psi_n = \varphi_{\leq n} \wedge \varphi_{\geq n}$?
- **Exercise**: Can one specify an infinite structure?

Reals

- Consider the structure ($\mathbb{R}, +, \times, 0$), where $+$ and \times are interpreted to be addition and multiplication as usual.
- Can we define the relation \lt in this structure?
- Is there a formula $\varphi(x, y)$ such that for all $a, b \in \mathbb{R}$, $((\mathbb{R}, +, \times, 0), [x \mapsto a, y \mapsto b]) \models \varphi(x, y)$ iff $a < b$?

Reals

- Consider the structure ($\mathbb{R}, +, \times, 0$), where $+$ and \times are interpreted to be addition and multiplication as usual.
- Can we define the relation \lt in this structure?
- Is there a formula $\varphi(x, y)$ such that for all $a, b \in \mathbb{R}$, $((\mathbb{R}, +, \times, 0), [x \mapsto a, y \mapsto b]) \models \varphi(x, y)$ iff $a < b$?
- φ(*x*, *y*) ≔ ∃*z*. [¬(*z* ≡ 0) ∧ ∃*w*. [*z* ≡ *w* × *w*] ∧ *x* + *z* ≡ *y*]
- We say that < is **elementary definable** in this structure
- An *n*-ary relation *R* is said to be elementary definable in a structure ℳ if there is a formula φ with *n* parameters such that M , $[x_1 \mapsto m_1, ..., x_n \mapsto m_n] \models \varphi(x_1, ..., x_n)$ iff $(m_1, ..., m_n) \in R$.

• Consider (ℝ, +, 0). Is < elementary definable here?

- Consider (ℝ, +, 0). Is < elementary definable here? **No.**
- Suppose there exists some $\varphi(x, y)$ such that $((\mathbb{R}, +, 0), [x \mapsto a, y \mapsto b]) \models \varphi(x, y)$ iff $a < b$. Want a contradiction.
- Theorem: If *M* and *M'* are isomorphic Σ-structures, then for all expressions φ , $\mathcal{M} \models \varphi$ iff $\mathcal{M}' \models \varphi$.
- Aside: Why the same φ ? M and M' both Σ -structures, and $\varphi \in FO_{\Sigma}$!
- Suppose there is an isomorphism η from $\mathcal{M} = (A, \iota)$ to $\mathcal{M}' = (B, \iota')$. Then, $\eta : A \to B$ and $\eta^{-1} : B \to A$ are both structure-preserving. $\eta(f_A(a_1, ..., a_n)) = f_B(\eta(a_1), ..., \eta(a_n))$ $\eta^{-1}(f_B(b_1, ..., b_n)) = f_A(\eta^{-1}(b_1), ..., \eta^{-1}(b_n))$ $f \in \mathcal{F}$, $\iota(f) = f_A$, $\iota'(f) = f_B$
- Similar statements hold for the relation symbols in \mathcal{P} also.
- One can also show that for every σ ∶ \mathcal{V} → *A*, η ∘ σ ∶ \mathcal{V} → *B*, and for every $\sigma' : \mathcal{V} \to B$, $\eta^{-1} \circ \sigma' : \mathcal{V} \to A$.

- Suppose there exists some $\varphi(x, y)$ such that $((\mathbb{R}, +, 0), [x \mapsto a, y \mapsto b]) \models \varphi(x, y)$ iff $a < b$. Want a contradiction.
- If we can demonstrate a structure M' isomorphic to $(\mathbb{R}, +, 0)$ (obtained via some isomorphism η) and contradict the iff using *M'* , we are done.
- Let $\eta(r) = -r$. Is η a structure-preserving isomorphism?

- • Suppose there exists some $\varphi(x, y)$ such that $((\mathbb{R}, +, 0), [x \mapsto a, y \mapsto b]) \models \varphi(x, y)$ iff $a < b$. Want a contradiction.
- If we can demonstrate a structure M' isomorphic to $(\mathbb{R}, +, 0)$ (obtained via some isomorphism η) and contradict the iff using *M'* , we are done.
- Let $\eta(r) = -r$. Is η a structure-preserving isomorphism? Yes!
	- $n(0) = 0$ and $n(a + b) = -(a + b) = (-a) + (-b) = n(a) + n(b)$
- So η is an isomorphism from $(\mathbb{R}, +, 0)$ to itself.
- So $(\mathbb{R}, +, 0), \sigma \models \varphi(a, b)$ iff $(\mathbb{R}, +, 0), \sigma \models \varphi(-a, -b)$
- (ℝ, +, 0), σ ⊧ φ (*a*, *b*) iff *a* < *b*, and (ℝ, +, 0), σ ⊧ φ (-*a*, -*b*) iff -*a* < -*b*.
- Contradiction! So < cannot be elementary defined in the theory of reals using $+$ and 0.