
Lecture 19 - More Natural Deduction

Vaishnavi Sundararajan

COL703 - Logic for Computer Science

Vaishnavi COL703 - Lecture 19 October 24, 2024 1 / 21



Recap: Natural deduction proof system

• Proof system that more closely mirrors human reasoning

• No axiom schema, all proof rules

• Each operator gets an introduction rule and/or an elimination rule

• Introduction rule: Operator appears in the conclusion

• Elimination rule: Operator appears in the (RHS of) premise(s), does not
appear in the conclusion

• More amenable to automation; enjoys some nice properties

Vaishnavi COL703 - Lecture 19 October 24, 2024 2 / 21



Recap: Proof rules for propositional fragment

Introduction rule Elimination rule
Γ ⊢ φ0 Γ ⊢ φ1

∧i
Γ ⊢ φ0 ∧ φ1

Γ ⊢ φ0 ∧ φ1
∧ej

Γ ⊢ φj
Γ ⊢ φj

∨ij
Γ ⊢ φ0 ∨ φ1

Γ ⊢ φ0 ∨ φ1 Γ,φ0 ⊢ ψ Γ,φ1 ⊢ ψ
∨e

Γ ⊢ ψ
Γ,φ ⊢ ψ

⊃i
Γ ⊢ φ ⊃ ψ

Γ ⊢ φ ⊃ ψ Γ ⊢ φ
⊃e

Γ ⊢ ψ
Γ,φ ⊢ ¬ψ Γ,φ ⊢ ψ

¬i
Γ ⊢ ¬φ

Γ ⊢ ¬¬φ
¬e

Γ ⊢ φ

Vaishnavi COL703 - Lecture 19 October 24, 2024 3 / 21



Recap: Proof rules for ∃ and ∀

Introduction rule Elimination rule
Γ ⊢ φ{y/x}

∀i (y fresh)
Γ ⊢ ∀x. [φ]

Γ ⊢ ∀x. [φ]
∀e

Γ ⊢ φ{t/x}
Γ ⊢ φ{t/x}

∃i
Γ ⊢ ∃x. [φ]

Γ ⊢ ∃x. [φ] Γ,φ{y/x} ⊢ ψ
∃e (y fresh)

Γ ⊢ ψ

where t is a term in the language, and y ∊𝒱 is fresh if y ∉ vars(Γ ∪ {φ,ψ}).

Ax (φ ∊ Γ)
Γ ⊢ φ

We say that Γ ⊢𝒢 φ if there is a proof of φ from assumptions Γ using Ax and
the rules in both the above tables.

Vaishnavi COL703 - Lecture 19 October 24, 2024 4 / 21



Different proofs of the same sequent

Does (p ∧ q) ∧ (r ∧ s) ⊢𝒢 p ∨ s?

Let Γ = {(p ∧ q) ∧ (r ∧ s)}.

Ax
Γ ⊢ (p ∧ q) ∧ (r ∧ s)

∧e0
Γ ⊢ p ∧ q

∧e0
Γ ⊢ p

∨i0
Γ ⊢ p ∨ s

Ax
Γ ⊢ (p ∧ q) ∧ (r ∧ s)

∧e1
Γ ⊢ r ∧ s

∧e1
Γ ⊢ s

∨i1
Γ ⊢ p ∨ s

• These are clearly different proofs! One breaks down p∧ q, the other r∧ s.

• But we might have proofs which differ only in some “unnecessary
detour” (but essentially perform the same “relevant” operations)

• Are these to be considered different? How do we compare proofs?

• Eliminate unnecessary detours, get a “normal” form for all proofs

• Compare proofs via their normal forms

Vaishnavi COL703 - Lecture 19 October 24, 2024 5 / 21



Different proofs of the same sequent

Does (p ∧ q) ∧ (r ∧ s) ⊢𝒢 p ∨ s? Let Γ = {(p ∧ q) ∧ (r ∧ s)}.

Ax
Γ ⊢ (p ∧ q) ∧ (r ∧ s)

∧e0
Γ ⊢ p ∧ q

∧e0
Γ ⊢ p

∨i0
Γ ⊢ p ∨ s

Ax
Γ ⊢ (p ∧ q) ∧ (r ∧ s)

∧e1
Γ ⊢ r ∧ s

∧e1
Γ ⊢ s

∨i1
Γ ⊢ p ∨ s

• These are clearly different proofs! One breaks down p∧ q, the other r∧ s.

• But we might have proofs which differ only in some “unnecessary
detour” (but essentially perform the same “relevant” operations)

• Are these to be considered different? How do we compare proofs?

• Eliminate unnecessary detours, get a “normal” form for all proofs

• Compare proofs via their normal forms

Vaishnavi COL703 - Lecture 19 October 24, 2024 5 / 21



Unnecessary detours in proofs

Ax
φ,ψ ⊢ φ

Ax
φ,ψ ⊢ ψ

∧i
φ,ψ ⊢ φ ∧ ψ

∧e0
φ,ψ ⊢ φ

1 Ax
φ,ψ ⊢ φ 2

• In 1 , we first introduce an ∧, and then immediately eliminate it.

• Could have replaced this entire proof by 2 , without any such wasteful
detours involving large expressions.

• Clearly both valid proofs of the same sequent.

• Prefer 2 , since no large expression (φ ∧ ψ in this case) is introduced
only to be immediately eliminated.

• What other useless detours are possible? Can we get rid of those also?

Vaishnavi COL703 - Lecture 19 October 24, 2024 6 / 21



Removing unnecessary detours: ∧

Suppose Γ ⊢ φ0 via a proof π0 and Γ ⊢ φ1 via π1.

π0
⋅
⋅
⋅

Γ ⊢ φ0

π1
⋅
⋅
⋅

Γ ⊢ φ1
∧i

Γ ⊢ φ0 ∧ φ1
∧ei

Γ ⊢ φi

⇝

πi
⋅
⋅
⋅

Γ ⊢ φi

Vaishnavi COL703 - Lecture 19 October 24, 2024 7 / 21



Removing unnecessary detours: ∨

Suppose Γ ⊢ φ0 via π, Γ,φ0 ⊢ ψ via π0, and Γ,φ1 ⊢ ψ via π1.

π
⋅
⋅
⋅

Γ ⊢ φ0
∨i0

Γ ⊢ φ0 ∨ φ1

π0
⋅
⋅
⋅

Γ,φ0 ⊢ ψ

π1
⋅
⋅
⋅

Γ,φ1 ⊢ ψ
∨e

Γ ⊢ ψ

⇝

π0
⋅
⋅
⋅

Γ,φ0 ⊢ ψ

π
⋅
⋅
⋅

Γ ⊢ φ0
Cut

Γ ⊢ ψ

Exercise: What about an application of ∨ii in the second or third premise?
Is that a detour to be handled?

Vaishnavi COL703 - Lecture 19 October 24, 2024 8 / 21



Unnecessary detours: ⊃

Suppose Γ ⊢ φ via a proof π0 and Γ,φ ⊢ ψ via a proof π1.

π1
⋅
⋅
⋅

Γ,φ ⊢ ψ
⊃i

Γ ⊢ φ ⊃ ψ

π0
⋅
⋅
⋅

Γ ⊢ φ
⊃e

Γ ⊢ ψ

⇝

π1
⋅
⋅
⋅

Γ,φ ⊢ ψ

π0
⋅
⋅
⋅

Γ ⊢ φ
Cut

Γ ⊢ ψ

Vaishnavi COL703 - Lecture 19 October 24, 2024 9 / 21



Normal proofs

• We can eliminate the unnecessary detours for ∧, ∨, and⊃.

• If we keep getting rid of these useless detours, eventually, we arrive at a
normal proofwith no detours.

• Every proof can be converted to a normal equivalent (How?)
• Is a smaller proof inherently better?

• How large can a proof of Γ ⊢ φ be?

• No ab initio bound, since we still need to instantiate each proof rule
with expressions.

• Is there a bound on the size of any expression that can occur in any
proof of Γ ⊢ φ?

Vaishnavi COL703 - Lecture 19 October 24, 2024 10 / 21



Normal proofs

• We can eliminate the unnecessary detours for ∧, ∨, and⊃.

• If we keep getting rid of these useless detours, eventually, we arrive at a
normal proofwith no detours.

• Every proof can be converted to a normal equivalent (How?)
• Is a smaller proof inherently better?

• How large can a proof of Γ ⊢ φ be?

• No ab initio bound, since we still need to instantiate each proof rule
with expressions.

• Is there a bound on the size of any expression that can occur in any
proof of Γ ⊢ φ?

Vaishnavi COL703 - Lecture 19 October 24, 2024 10 / 21



Proof search: Systemwithout negation

• A normal proof will satisfy a subformula property
• Any expression occurring in any normal proof of Γ ⊢ φ is a subformula
of φ, or of some expression in Γ.

• Need to consider subformulas of the conclusion only when the last rule
is an introduction rule! Just subformulas of Γ for elimination rules.

• Consider the set S of subformulae of Γ and φ. S is perhaps large,
depending on how big Γ is (but still finite)!

• No longer have to consider arbitrary expressions in any proof; gives us
an algorithm for proof search!

• Algorithm is non-deterministic: Guess the last rule of a possible proof,
and check if premises are derivable.

Vaishnavi COL703 - Lecture 19 October 24, 2024 11 / 21



Proof search algorithm

• Want to determine if Γ ⊢ φ. Let the last rule of a proof be r.

• Suppose φ is α ∧ β, and we guess r to be ∧i

• Then, check if Γ ⊢ α and Γ ⊢ β

• Both (recursive) calls need to succeed!

• What if φ is α ⊃ β, and we guess r to be⊃i?

• Left hand side has to be enlarged!

• Recursive call to check if Γ, α ⊢ β

Vaishnavi COL703 - Lecture 19 October 24, 2024 12 / 21



Proof search algorithm – continued

• Why all the song and dance about a subformula property?

• Suppose we guess r to be ∧e0
• Then, we have to guess a ψ such that φ ∧ ψ ∊ S, and the recursive call is
to check if Γ ⊢ φ ∧ ψ

• Could be an enlarged LHS if r guessed to be ∨e

• If we “mark” formulas and contexts for which we have proofs, then
only polynomially many recursive calls are made to check if Γ ⊢ φ

• One gets a PSPACE algorithm

• Theorem provers often use smart heuristics to improve this!

Vaishnavi COL703 - Lecture 19 October 24, 2024 13 / 21



About negation

• Does this strategy lift to all of ⊢𝒢 ?

• What if I have to apply¬e to get φ?

• Have to consider¬¬φ one level up. Not a subformula!

• Perhaps still doable; add¬¬φ to the set of “subformulae” of φ

• What about¬i? Recall that we had to carefully think about which
expression to derive in contradictory forms.

• What tells me which such expression is the correct one?

• Not much more than intuition, it would seem!

• Negation seems to complicate life, even in the propositional fragment

Vaishnavi COL703 - Lecture 19 October 24, 2024 14 / 21



About negation

• Does this strategy lift to all of ⊢𝒢 ?

• What if I have to apply¬e to get φ?

• Have to consider¬¬φ one level up. Not a subformula!

• Perhaps still doable; add¬¬φ to the set of “subformulae” of φ

• What about¬i? Recall that we had to carefully think about which
expression to derive in contradictory forms.

• What tells me which such expression is the correct one?

• Not much more than intuition, it would seem!

• Negation seems to complicate life, even in the propositional fragment

Vaishnavi COL703 - Lecture 19 October 24, 2024 14 / 21



More about negation

• Recall that we had introduced the ⊥ operator; write¬φ as φ ⊃ ⊥

• Can capture¬i as follows.
⋅
⋅
⋅

Γ,φ ⊢ ψ ⊃ ⊥

⋅
⋅
⋅

Γ,φ ⊢ ψ
⊃e

Γ,φ ⊢ ⊥
⊃i

Γ ⊢ φ ⊃ ⊥

• What about¬e? No equivalent rule as such!

Can write the following
rule to capture the effect of¬e

Γ, ¬φ ⊢ ⊥
¬new

Γ ⊢ φ

• Moves an expression from left to right, and removes a negation
• Can still normalize and get some notion of a “subformula” property

Vaishnavi COL703 - Lecture 19 October 24, 2024 15 / 21



More about negation

• Recall that we had introduced the ⊥ operator; write¬φ as φ ⊃ ⊥

• Can capture¬i as follows.
⋅
⋅
⋅

Γ,φ ⊢ ψ ⊃ ⊥

⋅
⋅
⋅

Γ,φ ⊢ ψ
⊃e

Γ,φ ⊢ ⊥
⊃i

Γ ⊢ φ ⊃ ⊥

• What about¬e? No equivalent rule as such! Can write the following
rule to capture the effect of¬e

Γ, ¬φ ⊢ ⊥
¬new

Γ ⊢ φ

• Moves an expression from left to right, and removes a negation
• Can still normalize and get some notion of a “subformula” property

Vaishnavi COL703 - Lecture 19 October 24, 2024 15 / 21



Can we handle¬ better?

• ¬e a consequence of the law of excluded middle (LEM)

• LEM: φ ∨ ¬φ is valid for any expression φ

• What if we threw away LEM?

• Reject classical logic; move to intuitionistic logic
• Introduced by Brouwer in the first decade of the 20th century

• Basic idea: every proof needs to be constructive
• Informally: “An expression could be True, False, or unknown”
• Not allowed to get a proof of φ ∨ ¬φwithout proving φ or¬φ

Vaishnavi COL703 - Lecture 19 October 24, 2024 16 / 21



Intuitionistic logic: Propositional fragment

• Ax, and the rules for ∧, ∨, and⊃ as earlier; remove rules for¬

• Use the ⊥ operator, and the following (elimination) rule

Γ ⊢ ⊥
⊥e

Γ ⊢ φ

• ¬i can be captured using ⊥ and⊃i as follows
⋅
⋅
⋅

Γ,φ ⊢ ψ ⊃ ⊥

⋅
⋅
⋅

Γ,φ ⊢ ψ
⊃e

Γ,φ ⊢ ⊥
⊃i

Γ ⊢ φ ⊃ ⊥

• Subformula property: ⊥ is a subformula of any φ; still a finite set!

Vaishnavi COL703 - Lecture 19 October 24, 2024 17 / 21



And onemore thing...

• What about normalization though?

• Do earlier rewrites suffice? Do we need to handle detours due to ⊥?

• What about a proof of the following shape?
⋅
⋅
⋅

Γ ⊢ ⊥
⊥e

Γ ⊢ α ∧ β
∧e0

Γ ⊢ α

• Could have got α directly from ⊥; unnecessarily introduced α ∧ β

• New normalization rule: No rule follows an application of ⊥e
• Any normal proof enjoys the subformula property involving ⊥

• Clean proof search (that also handles negation-without-LEM)

Vaishnavi COL703 - Lecture 19 October 24, 2024 18 / 21



And onemore thing...

• What about normalization though?

• Do earlier rewrites suffice? Do we need to handle detours due to ⊥?

• What about a proof of the following shape?
⋅
⋅
⋅

Γ ⊢ ⊥
⊥e

Γ ⊢ α ∧ β
∧e0

Γ ⊢ α

• Could have got α directly from ⊥; unnecessarily introduced α ∧ β

• New normalization rule: No rule follows an application of ⊥e
• Any normal proof enjoys the subformula property involving ⊥

• Clean proof search (that also handles negation-without-LEM)

Vaishnavi COL703 - Lecture 19 October 24, 2024 18 / 21



What about FO now?

Are there unnecessary detours for ∀ and ∃ as well?
Suppose Γ ⊢ φ(y) for some fresh y ∉ vars(Γ) via a proof π.

π
⋅
⋅
⋅

Γ ⊢ φ(y)
∀i

Γ ⊢ ∀x. [φ(x)]
∀e

Γ ⊢ φ(t)

⇝
π′

⋅
⋅
⋅

Γ ⊢ φ(t)

Here, π′ is the proof πwhere every occurrence of y has been replaced by t.
Γ is unaffected since y is fresh.

Vaishnavi COL703 - Lecture 19 October 24, 2024 19 / 21



What about FO now?

π1
⋅
⋅
⋅

Γ ⊢ φ(t)
∃i

Γ ⊢ ∃x. [φ(x)]

π2
⋅
⋅
⋅

Γ,φ(z) ⊢ ψ
∃e

Γ ⊢ ψ

⇝

π1
⋅
⋅
⋅

Γ ⊢ φ(t)

π′
2
⋅
⋅
⋅

Γ,φ(t) ⊢ ψ
Cut

Γ ⊢ ψ

Here, π′
2 is the proof π2 where every occurrence of z has been replaced by t.

The proof is unaffected since z ∉ vars(Γ ∪ {ψ}), so replacing it by t (which
might or might not appear in Γ or ψ) makes no difference to the overall
structure of the proof.

Vaishnavi COL703 - Lecture 19 October 24, 2024 20 / 21



What about FO now?

• Subformula property has to be modified

• Every φ(t) a subformula of ∃x. [φ(x)] (introduction rule)

• Every φ(t) a subformula of ∀x. [φ(x)]

• Can remove detours; but the set of subformulae is now infinite!

• Unfortunately, no getting around this in the general case

• Proof search is not decidable

• But depending on the application, one might be able to restrict the
shapes of these rules to get decidability

• A security application, for example, might only existentially quantify
terms that a principal can generate – not arbitrary ones.

Vaishnavi COL703 - Lecture 19 October 24, 2024 21 / 21


