Lecture 19 - More Natural Deduction

Vaishnavi Sundararajan

COL703 - Logic for Computer Science

Recap: Natural deduction proof system

- Proof system that more closely mirrors human reasoning
- No axiom schema, all proof rules
- Each operator gets an introduction rule and/or an elimination rule
- Introduction rule: Operator appears in the conclusion
- Elimination rule: Operator appears in the (RHS of) premise(s), does not appear in the conclusion
- More amenable to automation; enjoys some nice properties

Recap: Proof rules for propositional fragment

Recap: Proof rules for ∃ **and** ∀

where *t* is a term in the language, and *y* ∈ $\mathcal V$ is fresh if *y* ∉ vars(Γ ∪ {φ, ψ}).

$$
\frac{\Gamma}{\Gamma + \varphi} \mathbf{A} \mathbf{x} \quad (\varphi \in \Gamma)
$$

We say that $\Gamma \vdash_{\mathcal{D}} \varphi$ if there is a proof of φ from assumptions Γ using Ax and the rules in both the above tables.

Different proofs of the same sequent

Does (*p* ∧ *q*) ∧ (*r* ∧ *s*) ⊢ *p* ∨ *s*?

Different proofs of the same sequent

Does $(p \land q) \land (r \land s) \vdash_{\mathcal{C}} p \lor s$? Let $\Gamma = \{(p \land q) \land (r \land s)\}.$

- These are clearly different proofs! One breaks down *p*∧*q*, the other*r*∧*s*.
- But we might have proofs which differ only in some "unnecessary detour" (but essentially perform the same "relevant" operations)
- Are these to be considered different? How do we compare proofs?
- Eliminate unnecessary detours, get a "normal" form for all proofs
- Compare proofs via their normal forms

Unnecessary detours in proofs

- In (1) , we first introduce an Λ , and then immediately eliminate it.
- Could have replaced this entire proof by (2) , without any such wasteful detours involving large expressions.
- Clearly both valid proofs of the same sequent.
- Prefer (2), since no large expression ($\varphi \wedge \psi$ in this case) is introduced only to be immediately eliminated.
- What other useless detours are possible? Can we get rid of those also?

Removing unnecessary detours: ∧

Suppose $\Gamma \vdash \varphi_0$ via a proof π_0 and $\Gamma \vdash \varphi_1$ via $\pi_1.$

Removing unnecessary detours: ∨

Suppose Γ ⊢ φ₀ via π, Γ, φ₀ ⊢ ψ via π₀, and Γ, φ₁ ⊢ ψ via π₁.

Exercise: What about an application of ∨i *i* in the second or third premise? Is that a detour to be handled?

Unnecessary detours: ⊃

Suppose $\Gamma \vdash \varphi$ via a proof π_0 and Γ , $\varphi \vdash \psi$ via a proof π_1 .

Normal proofs

- We can eliminate the unnecessary detours for \wedge , \vee , and \supset .
- If we keep getting rid of these useless detours, eventually, we arrive at a **normal proof** with no detours.
- Every proof can be converted to a normal equivalent (**How?**)
- Is a smaller proof inherently better?
- How large can a proof of $\Gamma \vdash \varphi$ be?

Normal proofs

- We can eliminate the unnecessary detours for \wedge , \vee , and \supset .
- If we keep getting rid of these useless detours, eventually, we arrive at a **normal proof** with no detours.
- Every proof can be converted to a normal equivalent (**How?**)
- Is a smaller proof inherently better?
- How large can a proof of $\Gamma \vdash \varphi$ be?
- No ab initio bound, since we still need to instantiate each proof rule with expressions.
- Is there a bound on the size of any expression that can occur in any proof of $Γ$ \vdash $φ$?

Proof search: System without negation

- A normal proof will satisfy a **subformula property**
- Any expression occurring in any normal proof of $\Gamma \vdash \varphi$ is a subformula of ϕ , or of some expression in Γ.
- Need to consider subformulas of the conclusion only when the last rule is an introduction rule! Just subformulas of Γ for elimination rules.
- Consider the set *S* of subformulae of Γ and φ. *S* is perhaps large, depending on how big Γ is (but still finite)!
- No longer have to consider arbitrary expressions in any proof; gives us an algorithm for proof search!
- Algorithm is non-deterministic: Guess the last rule of a possible proof, and check if premises are derivable.

Proof search algorithm

- Want to determine if $\Gamma \vdash \varphi$. Let the last rule of a proof be r.
- Suppose φ is $\alpha \wedge \beta$, and we guess r to be ∧i
- Then, check if $\Gamma \vdash \alpha$ and $\Gamma \vdash \beta$
- Both (recursive) calls need to succeed!
- What if φ is $\alpha \supset \beta$, and we guess r to be \supset ?
- Left hand side has to be enlarged!
- Recursive call to check if Γ , $\alpha \vdash \beta$

Proof search algorithm – continued

- Why all the song and dance about a subformula property?
- Suppose we guess r to be Δe_0
- Then, we have to guess a ψ such that $\varphi \wedge \psi \in S$, and the recursive call is to check if $\Gamma \vdash \varphi \land \psi$
- Could be an enlarged LHS if r guessed to be ∨e
- If we "mark" formulas and contexts for which we have proofs, then only polynomially many recursive calls are made to check if $\Gamma \vdash \varphi$
- One gets a PSPACE algorithm
- Theorem provers often use smart heuristics to improve this!

About negation

• Does this strategy lift to all of $\vdash_{\mathcal{G}}$?

About negation

- Does this strategy lift to all of $\vdash_{\mathcal{C}} ?$
- What if I have to apply \neg e to get ϕ ?
- Have to consider $\neg\neg\varphi$ one level up. Not a subformula!
- Perhaps still doable; add $\neg\neg\varphi$ to the set of "subformulae" of φ
- What about ¬i? Recall that we had to carefully think about *which* expression to derive in contradictory forms.
- What tells me which such expression is the correct one?
- Not much more than intuition, it would seem!
- Negation seems to complicate life, even in the propositional fragment

More about negation

- Recall that we had introduced the \perp operator; write $\neg \varphi$ as $\varphi \supset \perp$
- Can capture \neg i as follows.

• What about \neg e? No equivalent rule as such!

More about negation

- Recall that we had introduced the \perp operator; write $\neg \varphi$ as $\varphi \supset \perp$
- Can capture \neg i as follows.

$$
\begin{array}{c}\n\vdots & \vdots \\
\Gamma, \varphi \vdash \psi \supset \bot \quad \Gamma, \varphi \vdash \psi \\
\hline\n\frac{\Gamma, \varphi \vdash \bot}{\Gamma \vdash \varphi \supset \bot} \supset i\n\end{array}
$$

• What about $-e$? No equivalent rule as such! Can write the following rule to capture the effect of \neg e

$$
\frac{\Gamma, \neg \varphi \vdash \bot}{\Gamma \vdash \varphi} \neg new
$$

- Moves an expression from left to right, and removes a negation
- Can still normalize and get **some** notion of a "subformula" property

Can we handle ¬ **better?**

- \neg e a consequence of the law of excluded middle (LEM)
- LEM: ϕ \vee \neg ϕ is valid for any expression ϕ
- What if we threw away LEM?
- Reject classical logic; move to **intuitionistic logic**
- Introduced by Brouwer in the first decade of the 20th century
- Basic idea: every proof needs to be **constructive**
- Informally: "An expression could be True, False, or **unknown**"
- Not allowed to get a proof of $\phi \vee \neg \phi$ without proving ϕ or $\neg \phi$

Intuitionistic logic: Propositional fragment

- Ax, and the rules for \land , \lor , and \supset as earlier; remove rules for \neg
- Use the ⊥ operator, and the following (elimination) rule

$$
\frac{\Gamma \vdash \bot}{\Gamma \vdash \varphi} \bot e
$$

• \neg i can be captured using \bot and \supset i as follows

$$
\begin{array}{c}\n\vdots & \vdots \\
\Gamma, \varphi \vdash \psi \supset \bot \quad \Gamma, \varphi \vdash \psi \\
\hline\n\Gamma, \varphi \vdash \bot \quad \neg i \\
\hline\n\Gamma \vdash \varphi \supset \bot\n\end{array} \Rightarrow e
$$

• Subformula property: \perp is a subformula of any φ ; still a finite set!

And one more thing...

- What about normalization though?
- Do earlier rewrites suffice? Do we need to handle detours due to ⊥?

And one more thing...

- What about normalization though?
- Do earlier rewrites suffice? Do we need to handle detours due to ⊥?
- What about a proof of the following shape?

$$
\begin{array}{c}\n\vdots \\
\Gamma \vdash \bot \\
\hline\n\Gamma \vdash \alpha \land \beta \\
\hline\n\Gamma \vdash \alpha\n\end{array} \perp e
$$

- Could have got α directly from \perp ; unnecessarily introduced $\alpha \wedge \beta$
- **New normalization rule**: No rule follows an application of ⊥e
- Any normal proof enjoys the subformula property involving ⊥
- Clean proof search (that also handles negation-without-LEM)

What about FO now?

Are there unnecessary detours for ∀ and ∃ as well? Suppose $Γ$ \vdash $\varphi(y)$ for some fresh *y* \notin vars(Γ) via a proof π.

Here, π ′ is the proof π where every occurrence of *y* has been replaced by *t*. Γ is unaffected since *y* is fresh.

What about FO now?

Here, π ′ 2 is the proof π² where every occurrence of *z* has been replaced by *t*. The proof is unaffected since *z* ∉ vars(Γ ∪ {ψ}), so replacing it by *t* (which might or might not appear in Γ or ψ) makes no difference to the overall structure of the proof.

What about FO now?

- Subformula property has to be modified
- Every φ(*t*) a subformula of ∃*x*. [φ(*x*)] (introduction rule)
- Every $\varphi(t)$ a subformula of $\forall x$. $[\varphi(x)]$
- Can remove detours; but the set of subformulae is now infinite!
- Unfortunately, no getting around this in the general case
- Proof search is not decidable
- But depending on the application, one might be able to restrict the shapes of these rules to get decidability
- A security application, for example, might only existentially quantify terms that a principal can generate – not arbitrary ones.