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Recap: Completeness of +,,

* Godel’s Completeness Theorem (1929): If T k ¢, then T k¢
* Equivalent statement: Any consistent set of expressions is satisfiable

* Lindenbaum’s Lemma: Every consistent set can be extended to an
3-fulfilled maximally consistent set (MCS).

* Show a model for an 3-fulfilled MCS.

* So every consistent set can be extended to an 3-fulfilled MCS which is
satisfiable.

* Same model satisfies the original consistent set (contained) also.
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Proof system

* We have shown that -, is a complete proof system for FOL.

e Itisnota particularly intuitive proof system though.

* Exercise: Try to prove F, Jx. [x = x|

* Everything has to be cast in terms of —, ©, and v

* One needs to know which instances of which axioms to use

* Would like a proof system that more closely mirrors human reasoning
* Fewer axioms, more proof rules!

* Gerhard Gentzen introduced one such, called “Natural Deduction”
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Natural Deduction

* No axiom schema, only proof rules

* No need to worry about which instances of which axioms

* Each operator gets an introduction rule and/or an elimination rule
* Introduction rule: Operator appears in the conclusion

* Elimination rule: Operator appears in the (RHS of) premise(s), does not
appear in the conclusion
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Proof rules for propositional fragment

Introduction rule Elimination rule
Fl—(po Fl—(pl . r|—(P0/\(P1
Al —/\e}-
I'E oA I'F ¢
I'Fe TEeoVer Tgoky T kv
——— Vij; Ve
I'FeoVaer Iky
Loy ooy Ttro
— D] e
'FeDvy 'y
LeFay Loty [ —
-l ——
I“I——mp rl—(P
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Proof rules for 3 and V

Introduction rule Elimination rule
I+ b'e T'F Vx.
ﬂ Vi (y fresh) —[(P] Ve
I+ Vx. [¢] T+ oft/x}
I' - of{t/x I' - 3x. I, x}
ot/ o] ToDMEY
I+ 3x [¢] 'y

where t is a term in the language, and y € 7 is fresh if y & vars(T' U {o, y}).

Ax (p€el)
o

We say that I' - ¢ if there is a proof of ¢ from assumptions I' using Ax and
the rules in both the above tables.
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Example o

Show that Vx. [P(x)] F¢ 3x. [P(x)]

Vx. [P(x)] + Vx. [P(X)]

vx. [P(x)] + P(t)

vx. [P(¥)] F 3x. [P(x)] |
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Example 1

LetT = {Vx. [L(x) D =U(X)],Vx. [P(x) D =T(x)],L(a) V T(a)}. Show that
I'+¢ P(a) o =U(a).
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Example 1

LetT = {Vx. [L(x) D =U(X)],Vx. [P(x) D =T(x)],L(a) V T(a)}. Show that

I'+¢ P(a) D =U(a). LetI" =T U {P(a)}.
Ax
I', T(a), =L(a) + Vx. [P(x) D =T(x)]
Ve Ax
I', T(a), =L(a) + P(a) D —T(a) I, T(a), =L(a) + P(a)
De Ax
I', T(a), -L(a) + —T(a) I', T(a), -L(a) + T(a)

-l

FI,T(Q) [= ﬁﬁL(a)

e
I’,T(a) + L(a)
Ax Ax Ax .
I’ Fvx [L(x) > =UX)] I’ + L(a) V T(a) I’,L(a) + L(a) I',T(a) + L(a)
Ve Ve
I' + L(a) © ~U(a) I’ + L(a)
De
I’ + —|U(a)
i

I+ P(a) 2 =U(a)
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Example 2

Show that F¢ (=@ V =) D = (@ Av).
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Example 2

Show that F¢ (=@ V =) D = (@ Av).
LetT = {—|(p \ —|\|I} andA =TU {—|(p}

Ax
A@Ay) oAy L
Ax Ne; Similar proof
A(@AY) F o AlAyY) Fo :
X =l .
FI——|<pV—|\|/ F,—-(pl——u((pAq/) F,—|\pl——|(cp/\\p)v
e
I'=(eAy)
i

=@V =y D =(eAy)
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Example 3

Show that F¢ —(@ Av) D (= V —v).
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Example 3
Show that F¢ =(@ Av) D (= V —v). Let a == = (9 A y).

77

akE-=eV-ay )
]

Fa>D (=eV-—y)

¢ Tip: If you have to prove I' - a V 3, where I' 4 a and I' i+, B, use —e!
* Same for if you have to prove I' ¢ 3x. [a], but I t#¢ a(t) for any t.

e If all else fails, look to —e for help!
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Example 3

Show that F¢ =(@ Av) D (= V —v). Let a == = (¢ A y).

777

ok —|—|(—|([) \ —|\|!)

—e

abk—=eVay

The only way we know to get a “brand new” expression headed by — is —i!
Suppose we had a formula p such that the following held, then done.

Ol,—|(ﬂ(pV —|\|l) - ﬂﬁ Ol,—|(—|(pV —|\Jrl) = ﬁ
ak —|—|(—|(p \ —|\V)

=l

—e

akE =@V -ay

But what is this  supposed to be?
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Example 3

Show that F¢ =(@ Av) D (= V —v). Let a == = (¢ A y).

777

ok ﬁﬁ(ﬁ([) \ ﬁ\|!)

—e

abk—=eVay

The only way we know to get a “brand new” expression headed by — is —i!
Suppose we had a formula p such that the following held, then done.

Ol,—|(ﬂ(pV —|\|l) - ﬂﬁ Ol,—|(—|(pV —|\Jrl) = ﬁ
ak —|—|(—|(p \ —|\V)

=l

—e

ak—=eV-ay

But what is this p supposed to be? What can we prove from this context?
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Example 3

Show that F¢ =(@ Av) D (= V —v). Let a == = (¢ A y).

Ax

—|(ﬂ(p \% —|\|!), (O i 0] Viy
—|(—|(p \% —|\V), -Q E =@V Ay ﬂ(—|(|) \% ﬂ\]!), ¢ —|(—|(|) \% —|\|J)
—|(—|(|) \% —|\|J) e I [0}
(V) Fo

=l

—e

Similarly, = (—¢ V =) + y. Exercise: Draw this proof tree.
Can use Monotonicity and Ai to get a proof 7 of

a,—|(—|(pV —|\|J) Feo AV
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Example 3
Show that F¢ =(@ Av) D (= V —v). Let a == = (¢ A y).

T

A_X .
a, —|(—|(|) \ —|\|J) Fa a, —|(—|(|) \ —|\|I) ~ ((p /\1|J)

ok ﬂﬂ(ﬂ(p \ ﬂ\ll)

il

—e

ak=eV-ay

Exercise: Prove that Vx. [P(x) V =P(x)].
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Example 4

Show that F¢ =Vx. [P(x)] 2 3x. [=P(x)].

Vaishnavi COL703 - Lecture 18



Example 4

Show that F¢ =Vx. [P(x)] 2 3x. [=P(x)].

777

=Vx. [P(x)] I— Ix. [=P(x)]
F —Vx. [P(x)] 2 3x. [-P(x)]

-]
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Example 4

Show that F¢ =Vx. [P(x)] 2 3x. [=P(x)].
777 777

—Vx. [PGO], =3x. [2PCO] F =y —Vx. [PGO], —=3x. [<PCO] Fy

il

=Vx. [P(X)] F —=—=3x. [—|P(X)]
=Vx. [P(x)] + 3Ix. [-P(X)]
F =Vx. [P(x)] D 3Ix. [=P(x)]

i
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Example 4

Show that F¢ —=Vx. [P(x)] 2 3x. [=P(x)]. Let a := =Vx. [P(x)].
Ax

—ax. [<P(0)],—PY) - —PQ)
Ax A

—3x. [—|P(X)] , —|P(y) F —=3x. [—|P(X)] —3x. [—|P(X)] ) —|P(y)  3x. [—|P(X)]

mll

—3x. [ﬁP(X)] = —|—|P(y)
—3x. [—|P(X)] = P(y)
—3x. [AP(x)] F Vx. [P(x)]

+ Monotonicity

—e

A :
a,=3x. [=P(X)] F =Vx. [P(X)] * a,~3x. [PC)] F Vx. [P(X)]

il

—Vx. [P(X)] F —=—=3x. [—|P(X)]

—Vx. [P(¥)] F 3x. [P(X)] _je
2l

F =Vx. [P(x)] 2 3x. [-P(x)]

COL703 - Lecture 18



Why move to . ?

* One main reason for moving to ¢ was intuitiveness
* Easier proofs, as we just saw

* Another reason is convenience for automation
* Proof searchin 4 isnot syntactically decidable (even for PL)

° Have to search through (infinitely many possible) instantiations of
axiom schema which might appear in a proof

e Is k¢ better?
* We will see that - enjoys some nice properties.
* Monotonicity and cut hold as usual.

* Is there anything that helps with proof search?
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Unnecessary detours in proofs
Consider a proof of the following sort.

Ax Ax
oY Ee <P'\I’"‘|’A.

|
QY QAY
A

/\eo
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Unnecessary detours in proofs

Consider a proof of the following sort.

Ax Ax
oY Ee (P:\V"\VA.

I
QY QAY
—A
A

€0

We first introduce an A, and then immediately eliminate it.
Could have replaced this entire proof by the following, smaller proof
without any such wasteful detours involving large expressions.

Ax
»YyEQ
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Unnecessary detours in proofs

* Exercise: What does a proof involving a detour on an V or a O look like?

* Detours on these operators involve the introduction rule for that
operator, immediately followed by the elimination rule.

* What about —?
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Unnecessary detours in proofs

* Exercise: What does a proof involving a detour on an V or a O look like?

* Detours on these operators involve the introduction rule for that
operator, immediately followed by the elimination rule.

* What about —?
* Clearly —i followed by —e is not an unnecessary detour.
* We could not have done the earlier proofs without using this combo!

* However, the expressions we used for —i were informed by the context

and the expected conclusion.
* Can we eliminate all unnecessary detours?

* GivenT, q, is there some finite set to which every expression occurring

in any proof of I' -« a belongs?
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