Lecture 17 - Completeness

Vaishnavi Sundararajan

COL703 - Logic for Computer Science

Quiz

Recap: System \vdash_{HK} **for FO**

All generalizations of the following, along with MP.

(H1a)
$$\varphi \supset (\psi \supset \varphi)$$

(H1b) $(\varphi \supset (\psi \supset \chi)) \supset ((\varphi \supset \psi) \supset (\varphi \supset \chi))$
(H1c) $(\neg \varphi \supset \neg \psi) \supset ((\neg \varphi \supset \psi) \supset \varphi)$
(H2a) $x \equiv x$
(H2b) $x \equiv y \supset ((\varphi(x) \supset \varphi(y)) \land (\varphi(y) \supset \varphi(x)))$
(H3a) $\forall x. \ [\varphi \supset \psi] \supset (\forall x. \ [\varphi] \supset \forall x. \ [\psi])$
(H3b) $\varphi \supset \forall x. \ [\varphi]$ where x does not appear free in φ
(H3c) $\forall x. \ [\varphi] \supset \varphi\{t/x\}$ for any term t
 $\varphi \supset \psi \qquad \varphi$

We denote provability in this system with the symbol \vdash_{HK} .

Vaishnavi COL703 - Lecture 17 October 17, 2024

Recap: Completeness of \vdash_{HK}

- Gödel's Completeness Theorem (1929): If $\Gamma \models \varphi$, then $\Gamma \vdash_{HK} \varphi$
- Equivalent statement: Any consistent set of expressions is satisfiable
- Start out with a consistent set of expressions Γ
- Assume $\mathcal{V} \setminus \text{vars}(\Gamma)$ to be infinite. (Can always do this!)
- \exists -fulfilled Γ : for every expression of the form $\neg \forall x$. $[\alpha] \in \Gamma$, there exists some term t such that $\neg \alpha \{t/x\} \in \Gamma$
- **Lindenbaum's Lemma**: Every consistent set can be extended to an \exists -fulfilled maximally consistent set (MCS).

Vaishnavi COL703 - Lecture 17 October 17, 2024 4/12

Recap: Proof of Lindenbaum's Lemma

- Similar structure to the completeness proof for PL
- Fix enumerations, for each expression, put it into the set or not
- $\Gamma_0 := \Gamma$, and for every $i \ge 0$,

$$\Gamma_{i+1} \coloneqq \begin{cases} \Gamma_i' & \text{if } \Gamma_i' \text{ consistent and } \varphi_i \text{ not of the form } \neg \forall x. \ [\alpha] \\ \Gamma_i' \cup \{\neg \alpha \{y/x\}\} & \text{if } \Gamma_i' \text{ consistent, } \varphi_i = \neg \forall x. \ [\alpha], \text{ and} \\ & y \text{ the first variable not in } \mathsf{fv}(\Gamma_i) \cup \mathsf{vars}(\varphi_i) \\ \Gamma_i & \text{if } \Gamma_i' \text{ not consistent} \end{cases}$$

where
$$\Gamma_i' = \Gamma_i \cup \{\varphi_i\}$$
.

- where $\Gamma_i' = \Gamma_i \cup \{\phi_i\}$.
 Finally, $\Gamma_{ext} \coloneqq \bigcup_{i>0} \Gamma_i$
- Showed: Γ_{ext} is a maximally consistent and \exists -fulfilled extension of Γ .

A useful property of ∃-fulfilled MCSs

Lemma: Let Γ_{ext} be any \exists -fulfilled MCS. Then, for all expressions α and β

- 1. $\neg \alpha \in \Gamma_{\text{ext}}$ iff $\alpha \notin \Gamma_{\text{ext}}$
- 2. $\alpha \supset \beta \in \Gamma_{ext}$ iff $\alpha \notin \Gamma_{ext}$ or $\beta \in \Gamma_{ext}$
- 3. $\Gamma_{\text{ext}} \vdash \alpha \text{ iff } \alpha \in \Gamma_{\text{ext}}$. In particular, all $\alpha \in \Gamma_{\text{ext}}$ such that $\vdash_{\text{HK}} \alpha$.
- 4. $\forall x$. $[\alpha] \in \Gamma_{\text{ext}}$ iff $\alpha \{t/x\} \in \Gamma_{\text{ext}}$, for all terms t.

Proof: Statements (1)–(3) follow as for PL. Consider (4). If $\forall x$. $[\alpha] \in \Gamma_{\text{ext}}$, then $\Gamma_{\text{ext}} \vdash \forall x$. $[\alpha]$, by (3). We also have $\Gamma_{\text{ext}} \vdash \forall x$. $[\alpha] \supset \alpha\{t/x\}$ for any term t, by **(H3c)**. Thus, by MP, $\Gamma_{\text{ext}} \vdash \alpha\{t/x\}$ for any t, and so $\alpha\{t/x\} \in \Gamma_{\text{ext}}$ by (3). Now suppose $\forall x$. $[\alpha] \notin \Gamma_{\text{ext}}$, then $\neg \forall x$. $[\alpha] \in \Gamma_{\text{ext}}$, by (1). Since Γ_{ext} is \exists -fulfilled, we have $\neg \alpha\{y/x\} \in \Gamma_{\text{ext}}$ for some $y \in \mathscr{V}$. Thus, $\alpha\{y/x\} \notin \Gamma_{\text{ext}}$, and thus it is not the case that $\alpha\{t/x\} \in \Gamma$ for all terms t.

From an ∃-fulfilled MCS to a model

- What did we want to show? Any consistent set of expressions is satisfiable
- So far: Any consistent set of expressions can be extended to an ∃-fulfilled MCS
- If I can produce a model for this ∃-fulfilled MCS, done!
- Suppose Γ_{ext} is an \exists -fulfilled MCS corresponding to a consistent Γ .
- Need to build an interpretation $\mathcal{F} = ((M, \iota), \sigma)$ such that $\mathcal{F} \models \Gamma_{\text{ext}}$.
- We will, in fact, show that for every φ , $\mathcal{F} \models \varphi$ iff $\varphi \in \Gamma_{ext}$.
- We have a signature $\Sigma = (\mathscr{C}, \mathscr{F}, \mathscr{P})$. Need to
 - Define M
 - Fix interpretations via ι for every symbol in Σ to get $\mathcal{M} = (M, \iota)$
 - Fix an assignment σ

Some postulates about equality

For any $t, t_1, ..., t_n, u_1, ..., u_n \in T(\Sigma)$, we have the following:

- $\vdash_{HK} t \equiv t$
- $\vdash_{\mathit{HK}} (t_1 \equiv t_2) \supset (t_2 \equiv t_1)$
- $\vdash_{HK} (t_1 \equiv t_2 \land t_2 \equiv t_3) \supset (t_1 \equiv t_3)$
- $\vdash_{HK} (\bigwedge_{1 \le i \le n} t_i \equiv u_i) \supset (f(t_1, ..., t_n) \equiv f(u_1, ..., u_n))$ for any n-ary $f \in \mathcal{F}$
- $\vdash_{HK} (\bigwedge_{1 \leq i \leq n} t_i \equiv u_i) \supset (P(t_1, ..., t_n) \supset P(u_1, ..., u_n))$ for any n-ary $P \in \mathcal{P}$

Exercise: Show that these proofs exist!

Defining a domain M

- We need some domain M
- Every term symbol needs to be a name for some element of M
- What about terms where $t \equiv u$ belongs to Γ_{ext} ?
- They should map to the same element.
- Define a binary relation \simeq such that $t \simeq u$ iff $t \equiv u \in \Gamma_{\text{ext}}$
- Equality axioms guarantee that ≃ is an equivalence relation
- Exercise: Verify this! (What does this require you to show?)
- For every $t \in T(\Sigma)$, let [t] denote the equivalence class containing t
- Define $M := \{[t] \mid t \in T(\Sigma)\}$

Defining ι : Symbols in \mathcal{P}

• Let $P \in \mathcal{P}$ be an n-ary relation symbol. Define

$$\iota(P) = P_{\mathcal{M}} \coloneqq \left\{ ([t_1], ..., [t_n]) \mid P(t_1, ..., t_n) \in \Gamma_{\text{ext}} \right\}$$

• Claim: P_M is well-defined

Defining ι : Symbols in \mathscr{P}

- Let $P \in \mathcal{P}$ be an n-ary relation symbol. Define
 - $\iota(P) = P_{\mathcal{M}} \coloneqq \left\{ ([t_1], \dots, [t_n]) \mid P(t_1, \dots, t_n) \in \Gamma_{\text{ext}} \right\}$
- **Claim**: P_M is well-defined
- If $t_i \simeq u_i$ for $1 \leqslant i \leqslant n$ and $P(t_1, ..., t_n) \in \Gamma_{ext}$, then $P(u_1, ..., u_n) \in \Gamma_{ext}$.
- From the final equality postulate, we get

$$\vdash_{\mathsf{HK}} (t_1 \equiv u_1 \land \dots \land t_n \equiv u_n) \supset P(t_1, \dots, t_n) \supset P(u_1, \dots, u_n)$$

- Since $t_i \simeq u_i$ for $1 \le i \le n$, we have $t_i \equiv u_i \in \Gamma_{\text{ext}}$ for $1 \le i \le n$
- We also know that $P(t_1, ..., t_n) \in \Gamma_{\text{ext}}$, so the claim follows.
- **Exercise**: How do we get *containment*? MP on these just gives us derivability, right?

Defining ι : Symbols in \mathcal{F} and \mathscr{C}

• Let $f \in \mathcal{F}$ be an n-ary function symbol. Define $\iota(f) = f_{\mathcal{M}}$ as follows: $f_{\mathcal{M}}([t_1], ..., [t_n]) := [f(t_1, ..., t_n)].$

• Claim: f m is well-defined

Defining :: Symbols in $\mathcal F$ and $\mathscr C$

- Let $f \in \mathcal{F}$ be an n-ary function symbol. Define $\iota(f) = f_{\mathcal{M}}$ as follows: $f_{\mathcal{M}}([t_1], ..., [t_n]) := [f(t_1, ..., t_n)].$
- **Claim**: f_M is well-defined
- If $t_i \simeq u_i$ for $1 \leqslant i \leqslant n$, then $f(t_1, ..., t_n) \simeq f(u_1, ..., u_n)$.
- If $t_i \simeq u_i$ for $1 \leqslant i \leqslant n$, then $t_i \equiv u_i \in \Gamma_{\text{ext}}$ for $1 \leqslant i \leqslant n$.
- By the fourth equality postulate, $\vdash_{HK} f(t_1, ..., t_n) \equiv f(u_1, ..., u_n)$.
- So $f(t_1, ..., t_n) \equiv f(u_1, ..., u_n) \in \Gamma_{\text{ext}}$, and so $f(t_1, ..., t_n) \simeq f(u_1, ..., u_n)$.
- Let $c \in \mathcal{C}$ be a constant symbol. Define $\iota(c) = c_{\mathcal{M}} := [c]$
- $\mathcal{M} = (M, \iota)$ is the structure we will use to define our model.
- For $x \in \mathcal{V}$, define $\sigma(x) \coloneqq [x]$. $\mathcal{F} = (\mathcal{M}, \sigma)$ is our candidate model.

The model \mathcal{F}

- Want to show $\mathcal{F} \models \varphi$ iff $\varphi \in \Gamma_{\text{ext}}$ for any $\varphi \in \mathsf{FO}_{\Sigma}$.
- Proof by induction on the structure of φ .
- Base case: $\mathcal{F} \models \varphi$ iff $\varphi \in \Gamma_{\text{ext}}$ for any atomic formula φ (**Exercise!**)
- We omit the (straightforward) cases when $\varphi = \neg \psi$ and $\varphi = \psi \supset \xi$
- Consider the case when $\varphi = \forall x$. $[\psi]$.
 - $\forall x$. $[\psi] \in \Gamma_{\text{ext}}$ iff (from the useful properties of Γ_{ext}),
 - $\psi\{t/x\} \in \Gamma_{\text{ext}}$ for every $t \in T(\Sigma)$ iff (by IH),
 - $(\mathcal{M}, \sigma) \models \psi\{t/x\}$ for every t iff (by Substitution Lemma),
 - $(\mathcal{M}, \sigma[x \mapsto [t]]) \models \psi\{t/x\}$ for every t iff (by the semantics of \forall)
 - $\mathcal{F} \models \forall x. [\psi]$
- Thus, every consistent Γ (can be extended to an ∃-fulfilled MCS Γ_{ext} which) is satisfiable.