
Lecture 14 - Unification & Resolution

Vaishnavi Sundararajan

COL703 - Logic for Computer Science

Vaishnavi COL703 - Lecture 14 September 30, 2024 1 / 18



Recap: Substitutions & normal forms

• A substitution θ is a partial map from𝒱 to Τ(Σ), with a finite domain

• Read θ = {t/x} as “x is replaced by t under θ”

• Substitution lemma

• Q1x1…Qnxn. [φ] is in Prenex Normal Form (PNF) if φ is
quantifier-free (qf).

• For any FO expression φ, there exists a logically equivalent ψ in PNF.

• PNF expression Q1x1…Qnxn. [φ] is in SkolemNormal Form (SNF) if
Qi = ∀ for every 1 ⩽ i ⩽ n.

• For any FO sentence φ, there exists an equisatisfiable ψ in SNF.

Vaishnavi COL703 - Lecture 14 September 30, 2024 2 / 18



Recap: Herbrandmodels & unification

• Universe is Τg(Σ), the set of all ground terms over the signature Σ

• Map each symbol in the syntax to itself; variables map to ground terms

• A sentence φ ∊ FOΣ is satisfiable iff its SNF form φsnf is satisfiable iff
Γg, the set of all ground instances of the qf subexpression in φsnf, is
satisfied by a Herbrand model.

• A sentence is unsatisfiable iff some finite set of ground instances of its
qf subexpressions is unsatisfiable.

• Look to resolution for proving unsatisfiability

• Unification is the problem of finding a substitution θ so as to make
some terms identical.

• One solves an equation of the form t1θ = t2θ to find an appropriate θ.

Vaishnavi COL703 - Lecture 14 September 30, 2024 3 / 18



Recap: Unifiability

• A finite set of terms T = {ti ∣ 1 ⩽ i ⩽ n} is said to be unifiable if there
exists a θ (a unifier for T) such that tiθ = tjθ for all 1 ⩽ i, j ⩽ n.

• A substitution that is “less constrained” than another is said to be
“more general”. Look for the most general unifier (mgu).

• If a set of terms is unifiable, then it has an mgu.
• Only two possible obstacles to unification:

• Function clash (trying to unify f(…)with g(…)where f ≠ g)
• Occurs check (trying to unify x and twhere x ∊ vars(t))

• If neither of these occurs, a set is unifiable!

Vaishnavi COL703 - Lecture 14 September 30, 2024 4 / 18



Recap: Algorithm

• Start with a system of equations l1 = r1, l2 = r2, … , ln = rn
• Perform the following transformations till you cannot anymore.

1. li = t ∉𝒱 and ri = x: Replace li = ri by x = t

2. li = x and ri = x: Remove the equation

3. li = f(…) and ri = g(…): The following cases arise.
• f ≠ g: Clash; no unification possible. Terminate.
• f = g: Then li = f(t1, … , tk) and ri = f(u1, … , uk). Replace li = ri by k new
equations, each of the form tj = uj, for 1 ⩽ j ⩽ k.

4. li = x and ri = t: The following cases arise.
• x ∊ vars(t): Occurs check; no unification possible. Terminate.
• x ∉ vars(t): Replace every occurrence of x in �lj ∪ rj ∣ 1 ⩽ j ⩽ n, j ≠ i� by t.

Vaishnavi COL703 - Lecture 14 September 30, 2024 5 / 18



Example

1
g(Y) = X

f(X, h(X), Y) = f(g(Z),W, Z)

2
X = g(Y)

f(X, h(X), Y) = f(g(Z),W, Z)

3

X = g(Y)

X = g(Z)

h(X) = W

Y = Z

4

g(Z) = g(Y)

X = g(Z)

h(g(Z)) = W

Y = Z

5

Z = Y

X = g(Z)

h(g(Z)) = W

Y = Z

6
Z = Z

X = g(Z)

h(g(Z)) = W

Y = Z

7

X = g(Z)

h(g(Z)) = W

Y = Z

8

X = g(Z)

W = h(g(Z))

Y = Z

Vaishnavi COL703 - Lecture 14 September 30, 2024 6 / 18



Example

1
g(Y) = X

f(X, h(X), Y) = f(g(Z),W, Z)

2
X = g(Y)

f(X, h(X), Y) = f(g(Z),W, Z)

3

X = g(Y)

X = g(Z)

h(X) = W

Y = Z

4

g(Z) = g(Y)

X = g(Z)

h(g(Z)) = W

Y = Z

5

Z = Y

X = g(Z)

h(g(Z)) = W

Y = Z

6
Z = Z

X = g(Z)

h(g(Z)) = W

Y = Z

7

X = g(Z)

h(g(Z)) = W

Y = Z

8

X = g(Z)

W = h(g(Z))

Y = Z

Vaishnavi COL703 - Lecture 14 September 30, 2024 6 / 18



Example

1
g(Y) = X

f(X, h(X), Y) = f(g(Z),W, Z)

2
X = g(Y)

f(X, h(X), Y) = f(g(Z),W, Z)

3

X = g(Y)

X = g(Z)

h(X) = W

Y = Z

4

g(Z) = g(Y)

X = g(Z)

h(g(Z)) = W

Y = Z

5

Z = Y

X = g(Z)

h(g(Z)) = W

Y = Z

6
Z = Z

X = g(Z)

h(g(Z)) = W

Y = Z

7

X = g(Z)

h(g(Z)) = W

Y = Z

8

X = g(Z)

W = h(g(Z))

Y = Z

Vaishnavi COL703 - Lecture 14 September 30, 2024 6 / 18



Example

1
g(Y) = X

f(X, h(X), Y) = f(g(Z),W, Z)

2
X = g(Y)

f(X, h(X), Y) = f(g(Z),W, Z)

3

X = g(Y)

X = g(Z)

h(X) = W

Y = Z

4

g(Z) = g(Y)

X = g(Z)

h(g(Z)) = W

Y = Z

5

Z = Y

X = g(Z)

h(g(Z)) = W

Y = Z

6
Z = Z

X = g(Z)

h(g(Z)) = W

Y = Z

7

X = g(Z)

h(g(Z)) = W

Y = Z

8

X = g(Z)

W = h(g(Z))

Y = Z

Vaishnavi COL703 - Lecture 14 September 30, 2024 6 / 18



Example

1
g(Y) = X

f(X, h(X), Y) = f(g(Z),W, Z)

2
X = g(Y)

f(X, h(X), Y) = f(g(Z),W, Z)

3

X = g(Y)

X = g(Z)

h(X) = W

Y = Z

4

g(Z) = g(Y)

X = g(Z)

h(g(Z)) = W

Y = Z

5

Z = Y

X = g(Z)

h(g(Z)) = W

Y = Z

6
Z = Z

X = g(Z)

h(g(Z)) = W

Y = Z

7

X = g(Z)

h(g(Z)) = W

Y = Z

8

X = g(Z)

W = h(g(Z))

Y = Z

Vaishnavi COL703 - Lecture 14 September 30, 2024 6 / 18



Example

1
g(Y) = X

f(X, h(X), Y) = f(g(Z),W, Z)

2
X = g(Y)

f(X, h(X), Y) = f(g(Z),W, Z)

3

X = g(Y)

X = g(Z)

h(X) = W

Y = Z

4

g(Z) = g(Y)

X = g(Z)

h(g(Z)) = W

Y = Z

5

Z = Y

X = g(Z)

h(g(Z)) = W

Y = Z

6
Z = Z

X = g(Z)

h(g(Z)) = W

Y = Z

7

X = g(Z)

h(g(Z)) = W

Y = Z

8

X = g(Z)

W = h(g(Z))

Y = Z

Vaishnavi COL703 - Lecture 14 September 30, 2024 6 / 18



Example

1
g(Y) = X

f(X, h(X), Y) = f(g(Z),W, Z)

2
X = g(Y)

f(X, h(X), Y) = f(g(Z),W, Z)

3

X = g(Y)

X = g(Z)

h(X) = W

Y = Z

4

g(Z) = g(Y)

X = g(Z)

h(g(Z)) = W

Y = Z

5

Z = Y

X = g(Z)

h(g(Z)) = W

Y = Z

6
Z = Z

X = g(Z)

h(g(Z)) = W

Y = Z

7

X = g(Z)

h(g(Z)) = W

Y = Z

8

X = g(Z)

W = h(g(Z))

Y = Z

Vaishnavi COL703 - Lecture 14 September 30, 2024 6 / 18



Example

1
g(Y) = X

f(X, h(X), Y) = f(g(Z),W, Z)

2
X = g(Y)

f(X, h(X), Y) = f(g(Z),W, Z)

3

X = g(Y)

X = g(Z)

h(X) = W

Y = Z

4

g(Z) = g(Y)

X = g(Z)

h(g(Z)) = W

Y = Z

5

Z = Y

X = g(Z)

h(g(Z)) = W

Y = Z

6
Z = Z

X = g(Z)

h(g(Z)) = W

Y = Z

7

X = g(Z)

h(g(Z)) = W

Y = Z

8

X = g(Z)

W = h(g(Z))

Y = Z

Vaishnavi COL703 - Lecture 14 September 30, 2024 6 / 18



Algorithm: Termination

• Once we swap an equation of the form t = x, we do not swap back

• Howmany equations of the form x = x can we get for a given input?

• Howmany new equations does each f(…) = g(…) get replaced by?

• So transformations (1)–(3) can only be applied finitely many times.

• (4) can be applied at most once per variable.

• So the algorithm terminates in a finite number of steps.

• When the algorithm terminates, all equations are of the form xi = ti
(each xi only occurs once)

• This is called a set of equations in solved form.
• For a set of equations in solved form as above, the substitution
{t1/x1, t2/x2, … , tn/xn} is a unifier.

Vaishnavi COL703 - Lecture 14 September 30, 2024 7 / 18



Algorithm: Termination

• Once we swap an equation of the form t = x, we do not swap back

• Howmany equations of the form x = x can we get for a given input?

• Howmany new equations does each f(…) = g(…) get replaced by?

• So transformations (1)–(3) can only be applied finitely many times.

• (4) can be applied at most once per variable.

• So the algorithm terminates in a finite number of steps.

• When the algorithm terminates, all equations are of the form xi = ti
(each xi only occurs once)

• This is called a set of equations in solved form.
• For a set of equations in solved form as above, the substitution
{t1/x1, t2/x2, … , tn/xn} is a unifier.

Vaishnavi COL703 - Lecture 14 September 30, 2024 7 / 18



Algorithm: Correctness

• Soundness: If the algorithm produces a θ, then θ is a unifier for S.

• Completeness: If S is unifiable, then the algorithm produces a unifier
θ.

• Suppose I run the algorithm on a set S of equations, and get S′ after one
iteration (applying one instance of one transformation rule).

• Claim: A substitution θ is a unifier for S iff it is a unifier for S′.
• We now analyze each rule to see if this holds.

• For now, ignore the rules which cause the algorithm to terminate
without returning any unifier.

• We denote by r the rule that was applied.

Vaishnavi COL703 - Lecture 14 September 30, 2024 8 / 18



Algorithm: Correctness (contd.)

• r = (1): There exists a system of equations T s.t. S = T ∪ {t = x} and
S′ = T ∪ {x = t} for some x ∊𝒱 and some t ∉𝒱. tθ = xθ iff xθ = tθ, so
θ is a unifier for S iff it is a unifier for S′.

• r = (2): Then, S = S′ ∪ {x = x}. Any θ satisfies xθ = xθ, so the claim
holds for this case also.

• r = (3): There exists a T s.t. S = T ∪ {f(t1, … , tk) = f(u1, … , uk)} and
S′ = T ∪ {t1 = u1, … , tk = uk}. One can verify that
f(t1, … , tk)θ = f(u1, … , uk)θ iff t1θ = u1θ, … , tkθ = ukθ. Thus θ is a
unifier for S iff it is a unifier for S′.

Vaishnavi COL703 - Lecture 14 September 30, 2024 9 / 18



Algorithm: Correctness (contd.)

• r = (1): There exists a system of equations T s.t. S = T ∪ {t = x} and
S′ = T ∪ {x = t} for some x ∊𝒱 and some t ∉𝒱. tθ = xθ iff xθ = tθ, so
θ is a unifier for S iff it is a unifier for S′.

• r = (2): Then, S = S′ ∪ {x = x}. Any θ satisfies xθ = xθ, so the claim
holds for this case also.

• r = (3): There exists a T s.t. S = T ∪ {f(t1, … , tk) = f(u1, … , uk)} and
S′ = T ∪ {t1 = u1, … , tk = uk}. One can verify that
f(t1, … , tk)θ = f(u1, … , uk)θ iff t1θ = u1θ, … , tkθ = ukθ. Thus θ is a
unifier for S iff it is a unifier for S′.

Vaishnavi COL703 - Lecture 14 September 30, 2024 9 / 18



Algorithm: Correctness (contd.)

• r = (1): There exists a system of equations T s.t. S = T ∪ {t = x} and
S′ = T ∪ {x = t} for some x ∊𝒱 and some t ∉𝒱. tθ = xθ iff xθ = tθ, so
θ is a unifier for S iff it is a unifier for S′.

• r = (2): Then, S = S′ ∪ {x = x}. Any θ satisfies xθ = xθ, so the claim
holds for this case also.

• r = (3): There exists a T s.t. S = T ∪ {f(t1, … , tk) = f(u1, … , uk)} and
S′ = T ∪ {t1 = u1, … , tk = uk}. One can verify that
f(t1, … , tk)θ = f(u1, … , uk)θ iff t1θ = u1θ, … , tkθ = ukθ. Thus θ is a
unifier for S iff it is a unifier for S′.

Vaishnavi COL703 - Lecture 14 September 30, 2024 9 / 18



Algorithm: Correctness (contd.)

• r = (4): There is some T s.t. S = T ∪ {x = t} and S′ = T{t/x} ∪ {x = t}.
• Suppose we show that for any l = r in T and any substitution θ s.t.
xθ = tθ, we have lθ = rθ iff (l{t/x})θ = (r{t/x})θ.

• Then, if S′ has a unifier θ, (l{t/x})θ is identical to (r{t/x})θ for every l = r
in T. By the above statement, lθ = rθ, so θ is also a unifier for S.

• Similarly, if S has a unifier θ, lθ is identical to rθ, and
(l{t/x})θ = (r{t/x})θ, so θ is also a unifier for S′.

• How do we show that lθ = rθ iff (l{t/x})θ = (r{t/x})θ? Note that
x ∉ vars(t), so xθ = tθ = u for some u.

• If x ∉ vars(l), then l{t/x}θ = lθ.
• Now suppose x ∊ vars(l). Let xθ = tθ = u. Let θ = {u/x} ∪ θ′.

Vaishnavi COL703 - Lecture 14 September 30, 2024 10 / 18



Algorithm: Correctness (contd.)

• Suppose x ∊ vars(l). Let xθ = tθ = u. Let θ = {u/x} ∪ θ′. Then,
• tθ = tθ′ = u (since x ∉ vars(t))
• l{t/x}θ = l{t/x}({u/x} ∪ θ′) = l{t/x}θ′ (since x ∉ vars(t))
• l{t/x}θ′ = l({tθ′/x} ∪ θ′) (replacing x by t and then applying θ′ is the
same as replacing x by the result of applying θ′ to t “first”, while
replacing all other variables by their results under θ′)

• l({tθ′/x} ∪ θ′) = l({u/x} ∪ θ′) = lθ

• One can perform a similar analysis for r.

• Claim: If the algorithm terminates without a unifier, the original set S
of equations itself has no unifier.

• Proof sketch: If S has a unifier, then each new set of equations S′must
have a unifier too. Since S′ has no unifier (“bad” termination), chase
back to the fact that S has no unifier either.

Vaishnavi COL703 - Lecture 14 September 30, 2024 11 / 18



Algorithm: Correctness (contd.)

• Suppose the algorithm terminates with a set of equations
S∗ = {x1 = t1, … , xn = tn}. Let θ = {t1/x1, … , tn/xn}. Is θ an mgu for S∗?

• Consider any unifier τ for S∗. xiτ = tiτ for each 1 ⩽ i ⩽ n.

• Consider the function ρ = τ ↾ �𝒱 ∖ {x1, … , xn}�.

• We know that vars(tj) ∩ {x1, … , xn} = ∅. So tiτ = tiρ = ti.

• Then, xi(θ ∘ ρ) = (xiθ)ρ = tiρ = ti = xiτ.

• Therefore, τ = θ ∘ ρ for any τ that unifies S∗, and so θ is an mgu for S∗.
• θ and τ are unifiers of S as well, so θ is an mgu for S also.

Vaishnavi COL703 - Lecture 14 September 30, 2024 12 / 18



Resolution: Roadmap

• Γ ⊧ φ iff Γ ∪ {¬φ} unsatisfiable

• Every sentence in FO has an equisatisfiable sentence in SCNF

• A sentence is unsatisfiable iff some finite set of ground instances of its
qf subexpressions is unsatisfiable.

• Perform resolution to determine unsatisfiability

• What is our notion of clauses now? Literals?

• Want to apply resolution to the “clause form” of Γ ∪ {¬φ} and obtain
the empty clause to show unsatisfiability.

Vaishnavi COL703 - Lecture 14 September 30, 2024 13 / 18



SCNF, clauses, and literals

• Consider an SCNF sentence φ = ∀x1x2… xn. [ψ]where ψ qf.

• Suppose ψ = ⋀1⩽i⩽m δi where each δi = ⋁1⩽j⩽ki ℓj

• “Ignore” the universal quantifiers, focus on ψ

• Then, we represent φ also by the set of clauses �δi � 1 ⩽ i ⩽ m�.

• Each clause δi is represented by the set of literals �ℓi � 1 ⩽ i ⩽ ki�.

• Each literal is of the form P(…) or¬P(…) for P ∊𝒫.

• Perform unification on variables to eliminate contradictory literals
across clauses.

• Achtung: A “bad” termination of the unification algorithm will not
allow resolution to proceed. Avoid accidental bad terminations!

Vaishnavi COL703 - Lecture 14 September 30, 2024 14 / 18



Models of clauses

• For a substitution θ, the result of applying it to a clause is given by
δiθ = �ℓiθ � 1 ⩽ i ⩽ ki�. The set of ground instances of a clause δ is
Γg(δ) = {δθ � θ is a ground substitution for δ}.

• An empty clause has no models

• An interpretation is a model of a set of clauses if it is a model for every
clause in that set.

• A set S of clauses is unsatisfiable iff there is a finite subset S′ ⊆fin S
such that Γg(S′) is unsatisfiable.

Vaishnavi COL703 - Lecture 14 September 30, 2024 15 / 18



Clauses and literals: FO edition

• Exercise: Show that ∀x1… xn. � �
1⩽i⩽m

δi� ⇔ �

1⩽i⩽m

�∀x1… xn. [δi]�

• Consider the sentence ∀x. [P(x)] ∧ ∀x. [¬P(f(x))]. Is it satisfiable?

No.

• Can I turn this into the set of clauses �{P(x)}, {¬P(f(x))}�?

• What will the unification algorithm do on these clauses?

• Occurs check!
• So even though original expression was unsat, no way to derive the
empty clause.

• Rename bound variables to keep variables across clauses distinct.

• Only consider clauses with distinct variable names from now on.

Vaishnavi COL703 - Lecture 14 September 30, 2024 16 / 18



Clauses and literals: FO edition

• Exercise: Show that ∀x1… xn. � �
1⩽i⩽m

δi� ⇔ �

1⩽i⩽m

�∀x1… xn. [δi]�

• Consider the sentence ∀x. [P(x)] ∧ ∀x. [¬P(f(x))]. Is it satisfiable? No.

• Can I turn this into the set of clauses �{P(x)}, {¬P(f(x))}�?

• What will the unification algorithm do on these clauses?

• Occurs check!
• So even though original expression was unsat, no way to derive the
empty clause.

• Rename bound variables to keep variables across clauses distinct.

• Only consider clauses with distinct variable names from now on.

Vaishnavi COL703 - Lecture 14 September 30, 2024 16 / 18



Clauses and literals: FO edition

• Exercise: Show that ∀x1… xn. � �
1⩽i⩽m

δi� ⇔ �

1⩽i⩽m

�∀x1… xn. [δi]�

• Consider the sentence ∀x. [P(x)] ∧ ∀x. [¬P(f(x))]. Is it satisfiable? No.

• Can I turn this into the set of clauses �{P(x)}, {¬P(f(x))}�?

• What will the unification algorithm do on these clauses?

• Occurs check!
• So even though original expression was unsat, no way to derive the
empty clause.

• Rename bound variables to keep variables across clauses distinct.

• Only consider clauses with distinct variable names from now on.

Vaishnavi COL703 - Lecture 14 September 30, 2024 16 / 18



Clauses and literals: FO edition

• For resolution over PL, we resolved one literal at a time.

• Suppose I have two clauses of the form δ1 = {P(x), P(y)} and
δ2 = {¬P(m), ¬P(n)}. Is {δ1, δ2} satisfiable?

• Clearly not. But suppose we only replace y bym in our first attempt.
We are then left with a single clause of the form {P(x), ¬P(n)}.

• Unification cannot happen inside a clause, only across clauses!
• Original set was unsat, but no way to proceed from here and get the
empty clause.

• Takeaway: Substitutions give you power; use it! Unify as much as
possible in one go.

Vaishnavi COL703 - Lecture 14 September 30, 2024 17 / 18



Clauses and literals: FO edition

• For resolution over PL, we resolved one literal at a time.

• Suppose I have two clauses of the form δ1 = {P(x), P(y)} and
δ2 = {¬P(m), ¬P(n)}. Is {δ1, δ2} satisfiable?

• Clearly not. But suppose we only replace y bym in our first attempt.
We are then left with a single clause of the form {P(x), ¬P(n)}.

• Unification cannot happen inside a clause, only across clauses!
• Original set was unsat, but no way to proceed from here and get the
empty clause.

• Takeaway: Substitutions give you power; use it! Unify as much as
possible in one go.

Vaishnavi COL703 - Lecture 14 September 30, 2024 17 / 18



Resolution: Example

• Check if ∀x. [P(x) ∨ Q(x)] ⊧ Q(m).

• Check if ∀x. [P(x) ∨ Q(x)] ∪ {¬Q(m)} is unsatisfiable.

• Clause for ∀x. [P(x) ∨ Q(x)] is {P(x),Q(x)}.

• Suppose δ = {P(x),Q(x)}, and ℓ = ¬Q(m).

• Need to see if we can derive the empty clause from δ ∪ {ℓ}.

• Q(x) and Q(m) unify (What’s the mgu?)

• So we can resolve, just as we did for propositional logic, but with
unification thrown into the mix.

{P(x),Q(x)} {¬Q(m)}
{m/x}

P(m)

Vaishnavi COL703 - Lecture 14 September 30, 2024 18 / 18



Resolution: Example

• Check if ∀x. [P(x) ∨ Q(x)] ⊧ Q(m).

• Check if ∀x. [P(x) ∨ Q(x)] ∪ {¬Q(m)} is unsatisfiable.

• Clause for ∀x. [P(x) ∨ Q(x)] is {P(x),Q(x)}.

• Suppose δ = {P(x),Q(x)}, and ℓ = ¬Q(m).

• Need to see if we can derive the empty clause from δ ∪ {ℓ}.

• Q(x) and Q(m) unify (What’s the mgu?)

• So we can resolve, just as we did for propositional logic, but with
unification thrown into the mix.

{P(x),Q(x)} {¬Q(m)}
{m/x}

P(m)

Vaishnavi COL703 - Lecture 14 September 30, 2024 18 / 18



Resolution: Example

• Check if ∀x. [P(x) ∨ Q(x)] ⊧ Q(m).

• Check if ∀x. [P(x) ∨ Q(x)] ∪ {¬Q(m)} is unsatisfiable.

• Clause for ∀x. [P(x) ∨ Q(x)] is {P(x),Q(x)}.

• Suppose δ = {P(x),Q(x)}, and ℓ = ¬Q(m).

• Need to see if we can derive the empty clause from δ ∪ {ℓ}.

• Q(x) and Q(m) unify (What’s the mgu?)

• So we can resolve, just as we did for propositional logic, but with
unification thrown into the mix.

{P(x),Q(x)} {¬Q(m)}
{m/x}

P(m)

Vaishnavi COL703 - Lecture 14 September 30, 2024 18 / 18



Resolution: Example

• Check if ∀x. [P(x) ∨ Q(x)] ⊧ Q(m).

• Check if ∀x. [P(x) ∨ Q(x)] ∪ {¬Q(m)} is unsatisfiable.

• Clause for ∀x. [P(x) ∨ Q(x)] is {P(x),Q(x)}.

• Suppose δ = {P(x),Q(x)}, and ℓ = ¬Q(m).

• Need to see if we can derive the empty clause from δ ∪ {ℓ}.

• Q(x) and Q(m) unify (What’s the mgu?)

• So we can resolve, just as we did for propositional logic, but with
unification thrown into the mix.

{P(x),Q(x)} {¬Q(m)}
{m/x}

P(m)

Vaishnavi COL703 - Lecture 14 September 30, 2024 18 / 18


