Lecture 14 - Unification & Resolution

Vaishnavi Sundararajan

COL703 - Logic for Computer Science

Recap: Substitutions & normal forms

- A **substitution** θ is a partial map from $\mathcal V$ to $T(\Sigma)$, with a finite domain
- Read $\theta = \{t/x\}$ as "*x* is replaced by *t* under θ "
- Substitution lemma
- $Q_1x_1 ... Q_nx_n$. [φ] is in **Prenex Normal Form (PNF)** if φ is **quantifier-free (qf)**.
- For any FO expression φ , there exists a logically equivalent ψ in PNF.
- PNF expression $Q_1x_1 \dots Q_nx_n$. [φ] is in **Skolem Normal Form (SNF)** if *Q*^{*i*} = $∀$ for every $1 ≤ i ≤ n$.
- For any FO sentence φ , there exists an equisatisfiable ψ in SNF.

Recap: Herbrand models & unification

- Universe is $T^g(\Sigma)$, the set of all ground terms over the signature Σ
- Map each symbol in the syntax to itself; variables map to ground terms
- A sentence $\varphi \in \mathsf{FO}_{\Sigma}$ is satisfiable iff its SNF form φ_{snf} is satisfiable iff Γ *g* , the set of all ground instances of the qf subexpression in φ*snf*, is satisfied by a Herbrand model.
- A sentence is unsatisfiable iff some finite set of ground instances of its qf subexpressions is unsatisfiable.
- Look to resolution for proving unsatisfiability
- **Unification** is the problem of finding a substitution θ so as to make some terms identical.
- One solves an equation of the form $t_1\theta = t_2\theta$ to find an appropriate θ .

Recap: Unifiability

- A finite set of terms $T = \{t_i \mid 1 \leq i \leq n\}$ is said to be **unifiable** if there exists a θ (a **unifier** for *T*) such that $t_i\theta = t_i\theta$ for all $1 \leq i, j \leq n$.
- A substitution that is "less constrained" than another is said to be "more general". Look for the most general unifier (mgu).
- If a set of terms is unifiable, then it has an mgu.
- Only two possible obstacles to unification:
	- Function clash (trying to unify $f(...)$ with $g(...)$ where $f \neq g$)
	- Occurs check (trying to unify x and t where $x \in \text{vars}(t)$)
- If neither of these occurs, a set is unifiable!

Recap: Algorithm

- Start with a system of equations $l_1 = r_1, l_2 = r_2, ..., l_n = r_n$
- Perform the following transformations till you cannot anymore.
- 1. $l_i = t \notin \mathcal{V}$ and $r_i = x$: Replace $l_i = r_i$ by $x = t$
- 2. $l_i = x$ and $r_i = x$: Remove the equation
- 3. $l_i = f(...)$ and $r_i = g(...)$: The following cases arise.
	- $f \neq q$: Clash; no unification possible. Terminate.
	- $f = g$: Then $l_i = f(t_1, ..., t_k)$ and $r_i = f(u_1, ..., u_k)$. Replace $l_i = r_i$ by k new equations, each of the form $t_j = u_j$, for $1 \leqslant j \leqslant k$.
- 4. $l_i = x$ and $r_i = t$: The following cases arise.
	- $x \in \text{vars}(t)$: Occurs check; no unification possible. Terminate.
	- *x* ∉ vars(*t*): Replace every occurrence of *x* in $\{l_j \cup r_j \mid 1 \leq j \leq n, j \neq i\}$ by *t*.

$$
\begin{cases}\n\textcircled{1} \\
g(Y) = X \\
f(X, h(X), Y) = f(g(Z), W, Z)\n\end{cases}
$$

(1)
$g(Y) = X$
$f(X, h(X), Y) = f(g(Z), W, Z)$
(2)
$X = g(Y)$
$f(X, h(X), Y) = f(g(Z), W, Z)$

Algorithm: Termination

- Once we swap an equation of the form $t = x$, we do not swap back
- How many equations of the form $x = x$ can we get for a given input?
- How many new equations does each $f(...) = q(...)$ get replaced by?

Algorithm: Termination

- Once we swap an equation of the form $t = x$, we do not swap back
- How many equations of the form $x = x$ can we get for a given input?
- How many new equations does each $f(...) = q(...)$ get replaced by?
- So transformations (1) (1) (1) – (3) (3) (3) can only be applied finitely many times.
- ([4](#page-4-2)) can be applied at most once per variable.
- So the algorithm terminates in a finite number of steps.
- When the algorithm terminates, all equations are of the form $x_i = t_i$ (each *xⁱ* only occurs once)
- This is called **a set of equations in solved form**.
- For a set of equations in solved form as above, the substitution $\{t_1/x_1, t_2/x_2, ..., t_n/x_n\}$ is a unifier.

Algorithm: Correctness

- **Soundness**: If the algorithm produces a θ, then θ is a unifier for *S*.
- **Completeness**: If *S* is unifiable, then the algorithm produces a unifier θ.
- Suppose I run the algorithm on a set S of equations, and get S' after one iteration (applying one instance of one transformation rule).
- **Claim**: A substitution θ is a unifier for *S* iff it is a unifier for *S'*.
- We now analyze each rule to see if this holds.
- For now, ignore the rules which cause the algorithm to terminate without returning any unifier.
- We denote by r the rule that was applied.

• $r = (1)$ $r = (1)$ $r = (1)$: There exists a system of equations *T* s.t. *S* = *T* ∪ {*t* = *x*} and $S' = T \cup \{x = t\}$ for some $x \in \mathcal{V}$ and some $t \notin \mathcal{V}$. $t\theta = x\theta$ iff $x\theta = t\theta$, so θ is a unifier for *S* iff it is a unifier for *S* ′ .

- $r = (1)$ $r = (1)$ $r = (1)$: There exists a system of equations *T* s.t. *S* = *T* ∪ {*t* = *x*} and $S' = T \cup \{x = t\}$ for some $x \in \mathcal{V}$ and some $t \notin \mathcal{V}$. $t\theta = x\theta$ iff $x\theta = t\theta$, so θ is a unifier for *S* iff it is a unifier for *S* ′ .
- $r = (2)$ $r = (2)$ $r = (2)$: Then, $S = S' \cup \{x = x\}$. Any θ satisfies $x\theta = x\theta$, so the claim holds for this case also.

- $r = (1)$ $r = (1)$ $r = (1)$: There exists a system of equations *T* s.t. *S* = *T* ∪ {*t* = *x*} and $S' = T \cup \{x = t\}$ for some $x \in \mathcal{V}$ and some $t \notin \mathcal{V}$. $t\theta = x\theta$ iff $x\theta = t\theta$, so θ is a unifier for *S* iff it is a unifier for *S* ′ .
- $r = (2)$ $r = (2)$ $r = (2)$: Then, $S = S' \cup \{x = x\}$. Any θ satisfies $x\theta = x\theta$, so the claim holds for this case also.
- $r = (3)$ $r = (3)$ $r = (3)$: There exists a *T* s.t. *S* = *T* \cup {*f*($t_1, ..., t_k$) = *f*($u_1, ..., u_k$)} and $S' = T \cup \{t_1 = u_1, ..., t_k = u_k\}$. One can verify that *f*(*t*₁, ..., *t*_{*k*}) $θ = f(u_1, ..., u_k)θ$ iff *t*₁ $θ = u_1θ, ..., t_kθ = u_kθ$. Thus $θ$ is a unifier for *S* iff it is a unifier for *S* ′ .

• $r = (4)$ $r = (4)$ $r = (4)$: There is some *T* s.t. *S* = *T* ∪ {*x* = *t*} and *S'* = *T*{*t*/*x*} ∪ {*x* = *t*}.

- Suppose we show that for any $l = r$ in T and any substitution θ s.t. *x*θ = *t*θ, we have $lθ = rθ$ iff $(l{t/x})θ = (r{t/x})θ$.
- Then, if *S'* has a unifier θ , (*l*{*t*/*x*}) θ is identical to (*r*{*t*/*x*}) θ for every *l* = *r* in *T*. By the above statement, $l\theta = r\theta$, so θ is also a unifier for *S*.
- Similarly, if *S* has a unifier θ, *l*θ is identical to *r*θ, and (*l*{*t*/*x*})θ = (*r*{*t*/*x*})θ, so θ is also a unifier for *S* ′ .
- How do we show that $l\theta = r\theta$ iff $(l\{t/x\})\theta = (r\{t/x\})\theta$? Note that $x \notin \text{vars}(t)$, so $x\theta = t\theta = u$ for some *u*.
- If $x \notin \text{vars}(l)$, then $\text{l}_{\{t \}}(x) \theta = \theta$.
- Now suppose $x \in \text{vars}(l)$. Let $x\theta = t\theta = u$. Let $\theta = \{u/x\} \cup \theta'$.

- Suppose $x \in \text{vars}(l)$. Let $x\theta = t\theta = u$. Let $\theta = \{u/x\} \cup \theta'$. Then,
	- $t\theta = t\theta' = u$ (since $x \notin \text{vars}(t)$)
	- *l*{*t*/*x*} $\theta = l\{t/x\}$ ({*u*/*x*} ∪ θ') = *l*{*t*/*x*} θ' (since *x* ∉ vars(*t*))
	- *l*{*t*/*x*} $θ' = l({$ *{t* $θ' / x} ∪ θ'$ $)$ (replacing *x* by *t* and then applying $θ'$ is the same as replacing *x* by the result of applying θ ′ to *t* "first", while replacing all other variables by their results under θ')
	- \bullet *l*({*t*θ'/*x*} ∪ θ') = *l*({*u*/*x*} ∪ θ') = *l*θ
- One can perform a similar analysis for *r*.
- **Claim**: If the algorithm terminates without a unifier, the original set *S* of equations itself has no unifier.
- **Proof sketch**: If *S* has a unifier, then each new set of equations *S* ′ must have a unifier too. Since <mark>S'</mark> has no unifier ("bad" termination), chase back to the fact that *S* has no unifier either.

- Suppose the algorithm terminates with a set of equations *S*^{*} = {*x*₁ = *t*₁, ..., *x_n* = *t_n*}. Let θ = {*t*₁/*x*₁, ..., *t_n*/*x_n*}. Is θ an mgu for *S*^{*}?
- Consider any unifier τ for S^* . $x_i \tau = t_i \tau$ for each $1 \leq i \leq n$.
- Consider the function $\rho = \tau \upharpoonright (\mathcal{V} \setminus \{x_1, ..., x_n\})$.
- We know that vars(t_j) \cap { x_1 , ..., x_n } = Ø. So $t_i \tau = t_i \rho = t_i$.
- Then, x_i (θ ∘ ρ) = (x_i θ)ρ = t_i ρ = t_i = x_i τ.
- Therefore, $\tau = \theta \circ \rho$ for **any** τ that unifies *S*^{*}, and so θ is an mgu for *S*^{*}.
- θ and τ are unifiers of *S* as well, so θ is an mgu for *S* also.

Resolution: Roadmap

- $\Gamma \models \varphi$ iff $\Gamma \cup \{\neg \varphi\}$ unsatisfiable
- Every sentence in FO has an equisatisfiable sentence in SCNF
- A sentence is unsatisfiable iff some finite set of ground instances of its qf subexpressions is unsatisfiable.
- Perform resolution to determine unsatisfiability
- What is our notion of clauses now? Literals?
- Want to apply resolution to the "clause form" of $\Gamma \cup \{\neg \varphi\}$ and obtain the empty clause to show unsatisfiability.

SCNF, clauses, and literals

- Consider an SCNF sentence $\varphi = \forall x_1 x_2 ... x_n$. [ψ] where ψ qf.
- Suppose $\psi = \bigwedge_{1 \leq i \leq m} \delta_i$ where each $\delta_i = \bigvee_{1 \leq j \leq k_i} \ell_j$
- "Ignore" the universal quantifiers, focus on Ψ
- Then, we represent φ also by the set of **clauses** $\{\delta_i \mid 1 \leq i \leq m\}$.
- Each clause δ_i is represented by the set of **literals** $\{\ell_i \mid 1 \leq i \leq k_i\}$.
- Each literal is of the form $P(...)$ or $\neg P(...)$ for $P \in \mathcal{P}$.
- Perform unification on variables to eliminate contradictory literals **across clauses**.
- **Achtung**: A "bad" termination of the unification algorithm will not allow resolution to proceed. Avoid accidental bad terminations!

Models of clauses

- For a substitution θ , the result of applying it to a clause is given by $\delta_i \theta = \{ \ell_i \theta \mid 1 \leq i \leq k_i \}.$ The set of ground instances of a clause δ is Γ ^g(δ) = {δθ | θ is a ground substitution for δ}.
- An empty clause has no models
- An interpretation is a model of a set of clauses if it is a model for every clause in that set.
- A set *S* of clauses is unsatisfiable iff there is a finite subset $S' \subseteq_{fin} S$ such that Γ^g(S') is unsatisfiable.

- **Exercise**: Show that $\forall x_1 \dots x_n$. \bigwedge $\delta_i \mid \Leftrightarrow \mid \bigwedge$ $(\forall x_1 \dots x_n \colon [\delta_i])$
- Consider the sentence $\forall x$. [*P*(*x*)] ∧ $\forall x$. [¬*P*(*f*(*x*))]. Is it satisfiable?

1⩽*i*⩽*m*

1⩽*i*⩽*m*

- **Exercise**: Show that $\forall x_1 \dots x_n$. \bigwedge $\delta_i \mid \Leftrightarrow \mid \bigwedge$ $(\forall x_1 \dots x_n \colon [\delta_i])$
- 1⩽*i*⩽*m* Consider the sentence $\forall x$. [*P*(*x*)] ∧ $\forall x$. [¬*P*(*f*(*x*))]. Is it satisfiable? No.

1⩽*i*⩽*m*

Can I turn this into the set of clauses $\{P(x)\}\in\bigcap P(f(x))\}$?

- **Exercise**: Show that $\forall x_1 \dots x_n$. \bigwedge 1⩽*i*⩽*m* $\delta_i \mid \Leftrightarrow \mid \bigwedge$ 1⩽*i*⩽*m* $(\forall x_1 \dots x_n \colon [\delta_i])$
- Consider the sentence ∀*x*. [*P*(*x*)] ∧ ∀*x*. [¬*P*(*f*(*x*))]. Is it satisfiable? No.
- Can I turn this into the set of clauses $\{P(x)\}, \{\neg P(f(x))\}\}$?
- What will the unification algorithm do on these clauses?
- **Occurs check!**
- So even though original expression was unsat, no way to derive the empty clause.
- Rename bound variables to keep variables across clauses distinct.
- Only consider clauses with distinct variable names from now on.

- For resolution over PL, we resolved one literal at a time.
- Suppose I have two clauses of the form $\delta_1 = {P(x), P(y)}$ and $\delta_2 = \{\neg P(m), \neg P(n)\}.$ Is $\{\delta_1, \delta_2\}$ satisfiable?

- For resolution over PL, we resolved one literal at a time.
- Suppose I have two clauses of the form $\delta_1 = {P(x), P(y)}$ and $\delta_2 = \{\neg P(m), \neg P(n)\}.$ Is $\{\delta_1, \delta_2\}$ satisfiable?
- Clearly not. But suppose we only replace *y* by *m* in our first attempt. We are then left with a single clause of the form $\{P(x), \neg P(n)\}$.
- Unification cannot happen **inside** a clause, only across clauses!
- Original set was unsat, but no way to proceed from here and get the empty clause.
- **Takeaway**: Substitutions give you power; use it! Unify as much as possible in one go.

• Check if ∀*x*. [*P*(*x*) ∨ *Q*(*x*)] ⊧ *Q*(*m*).

- Check if ∀*x*. [*P*(*x*) ∨ *Q*(*x*)] ⊧ *Q*(*m*).
- Check if ∀*x*. [*P*(*x*) ∨ *Q*(*x*)] ∪ {¬*Q*(*m*)} is unsatisfiable.
- Clause for ∀*x*. [*P*(*x*) ∨ *Q*(*x*)] is {*P*(*x*), *Q*(*x*)}.
- Suppose $\delta = \{P(x), Q(x)\}\)$, and $\ell = \neg Q(m)$.
- Need to see if we can derive the empty clause from $\delta \cup \{\ell\}$.
- *Q*(*x*) and *Q*(*m*) unify (What's the mgu?)

- Check if ∀*x*. [*P*(*x*) ∨ *Q*(*x*)] ⊧ *Q*(*m*).
- Check if ∀*x*. [*P*(*x*) ∨ *Q*(*x*)] ∪ {¬*Q*(*m*)} is unsatisfiable.
- Clause for ∀*x*. [*P*(*x*) ∨ *Q*(*x*)] is {*P*(*x*), *Q*(*x*)}.
- Suppose $\delta = \{P(x), Q(x)\}\)$, and $\ell = \neg Q(m)$.
- Need to see if we can derive the empty clause from $\delta \cup \{\ell\}$.
- *Q*(*x*) and *Q*(*m*) unify (What's the mgu?)
- So we can resolve, just as we did for propositional logic, but with unification thrown into the mix.

- • Check if ∀*x*. [*P*(*x*) ∨ *Q*(*x*)] ⊧ *Q*(*m*).
- Check if ∀*x*. [*P*(*x*) ∨ *Q*(*x*)] ∪ {¬*Q*(*m*)} is unsatisfiable.
- Clause for ∀*x*. [*P*(*x*) ∨ *Q*(*x*)] is {*P*(*x*), *Q*(*x*)}.
- Suppose $\delta = \{P(x), Q(x)\}\)$, and $\ell = \neg Q(m)$.
- Need to see if we can derive the empty clause from $\delta \cup \{\ell\}$.
- *Q*(*x*) and *Q*(*m*) unify (What's the mgu?)
- So we can resolve, just as we did for propositional logic, but with unification thrown into the mix.

$$
\frac{\{P(x),Q(x)\}\{\neg Q(m)\}}{P(m)}\{m/x\}
$$