Lecture 12 - FO: Normal forms

Vaishnavi Sundararajan

COL703 - Logic for Computer Science

1/17

Recap: Towards a normal form

- Push all quantifiers out into one "block" at the head of the expression
- A **substitution** θ is a partial map from \mathcal{V} to $T(\Sigma)$, with a finite domain
- $\theta(t) = t$ for a term t in the language, if $vars(t) \cap dom(\theta) = \emptyset$
- Often write $t\theta$ to mean $\theta(t)$; $t\theta$ is a "substitution instance" of t
- We often write $\theta = \{t/x \mid x\theta = t \text{ and } x \in dom(\theta)\}$
- Read $\theta = \{t/x\}$ as "*x* is replaced by *t* under θ "
- **Substitution Lemma**: Given an interpretation $\mathcal{F} = ((M, \iota), \sigma)$ for some Σ , a term $t \in T(\Sigma)$, a formula $\varphi \in FO_{\Sigma}$, and a substitution $\{u/x\}$ such that $u^{\mathcal{F}} = m \in M$, the following hold:
 - $(t\{u/x\})^{\mathscr{F}} = t^{\mathscr{F}[x \mapsto m]}$
 - $\mathcal{F} \models \varphi\{u/x\} \text{ iff } \mathcal{F}[x \mapsto m] \models \varphi.$

Recap: Moving quantifiers out

- Want to move quantifiers into one block at the head of the expression
- **Theorem**: Let $z \notin fv(\varphi) \cup fv(\psi) \cup \{x_1, ..., x_n\}$, where $n \ge 0$. For $Q_i \in \{\forall, \exists\}$ for every $1 \le i \le n$, the following equivalences hold. $Q_1x_1 ... Q_nx_n$. $[\neg Qy. [\varphi]] \Leftrightarrow Q_1x_1 ... Q_nx_n$. $\overline{Q}y. [\neg \varphi]$ $Q_1x_1 ... Q_nx_n$. $[\psi \circ Qy. [\varphi]] \Leftrightarrow Q_1x_1 ... Q_nx_n$. $Qz. [\psi \circ \varphi\{z/y\}]$ $Q_1x_1 ... Q_nx_n$. $[Qy. [\varphi] * \psi] \Leftrightarrow Q_1x_1 ... Q_nx_n$. $Qz. [\varphi\{z/y\} * \psi]$ $Q_1x_1 ... Q_nx_n$. $[Qy. [\varphi] \supset \psi] \Leftrightarrow Q_1x_1 ... Q_nx_n$. $\overline{Q}z. [\varphi\{z/y\} \supset \psi]$

where
$$\circ \in \{\land, \lor, \supset\}$$
, and $* \in \{\land, \lor\}$, and $\overline{Q} = \begin{cases} \exists & \text{if } Q = \forall \\ \forall & \text{if } Q = \exists \end{cases}$

Prenex Normal Form (PNF)

- PNF: FO expression where all quantifiers "appear at the front"
- $Q_1 x_1 \dots Q_n x_n$. $[\varphi]$ is in PNF if φ is **quantifier-free (qf)**.
- Quantifier-free expressions $\subseteq FO_{\Sigma}$ generated by the below grammar. $\varphi, \psi \coloneqq t_1 \equiv t_2 \mid P(t_1, ..., t_n) \mid \neg \varphi \mid \varphi \land \psi \mid \varphi \lor \psi \mid \varphi \supseteq \psi$ where P is an *n*-ary predicate symbol in Σ , and $t_i \in T(\Sigma)$ for all $1 \leq i \leq n$.
- $Q_1 x_1 \dots Q_n x_n$ is the **prenex**; qf **body** φ contains only equality, predicates, and propositional connectives.
- **Theorem**: For any FO expression φ , there exists a logically equivalent ψ such that ψ is in Prenex Normal Form.

Skolem Normal Form (SNF)

- How does one check for satisfiability of a PNF expression?
- Choice of witness for ∃ might depend on value chosen for ∀ if ∃ appears "deeper" than ∀
- Can we reduce (eliminate?!) this sequence of dependencies?
- Recall: For our ∃*y* example last time, value of *m* was a function of the value assigned to *x*. Use this!
- Move to Skolem Normal Form

Skolem Normal Form (SNF)

- PNF expression $Q_1 x_1 \dots Q_n x_n$. $[\varphi]$ is in SNF if $Q_i = \forall$ for every $1 \le i \le n$.
- For $\forall x_1 x_n$. $[\phi]$ in SNF, we say that (qf) ϕ is the **body**
- What are we doing about the existential quantifiers?
- Intuition: Replace every ∃*y* by a "Skolem function" which computes *y* using all the (other) variables *y* depends on.
- Turn $\forall x_1 x_2 \dots x_n \exists y$. $[\varphi]$ into $\forall x_1 x_2 \dots x_n$. $[\varphi\{f_s(x_1, \dots, x_n)/y\}]$

"For every *x* there exists *y* such that $\varphi(x, y)$ "

Ļ

"There is a function sk which maps any x into y_s such that for every x, $\varphi(x, sk(x))$ "

Skolem's Theorem

Recall that a model of $\varphi \in FO_{\Sigma}$ is an interpretation \mathscr{F} based on a Σ -structure \mathscr{M} such that $\mathscr{F} \models \varphi$. We will refer to such a model as being "over Σ ".

Theorem: Let $\varphi \in FO_{\Sigma}$ be of the form $\forall x_1$. $[\forall x_2$. $[... \forall x_n$. $[\exists y. [\psi] ...]]]$, such that $x_i \neq x_j$ for any $i \neq j$ and $x_i \neq y$ for any $1 \leq i \leq n$. Let $\Sigma' = (\mathcal{C}, \mathcal{F} \cup \{sk\}, \mathcal{P})$ where $\Sigma = (\mathcal{C}, \mathcal{F}, \mathcal{P})$, and let $\varphi' = \forall x_1$. $[\forall x_2$. $[... \forall x_n$. $[\psi\{sk(x_1, ..., x_n)/y\}]$...]] $\in FO_{\Sigma'}$. Then,

- **1**. Every model of φ' over Σ' is a model of φ over Σ' .
- 2. Every model of φ over Σ can be expanded to a model of φ' over Σ' .

Note that we place no structural restrictions on φ (need not be in any normal form) or on ψ (need not be qf).

Note also that $FO_{\Sigma} \subseteq FO_{\Sigma'}$.

Skolem's Theorem

Proof:

(1) Any interpretation \mathcal{F} over Σ' which satisfies φ' must provide meaning to all of Σ as well (and the extra symbol sk in Σ'). So $\mathcal{F} \models \varphi$ also.

(2) Consider any model $\mathcal{F} = ((M, \iota), \sigma)$ of φ . $\varphi = \forall x_1. \ [\forall x_2. \ [... \forall x_n. \ [\exists y. \ [\psi] ...]]], \text{ so } \{x_1, ..., x_n, y\} \subseteq \mathsf{fv}(\psi).$ Since $\mathcal{F} \models \varphi$, for every *n*-tuple $(m_1, ..., m_n) \in M^n$, there exists at least one $m_y \in M$ such that $\mathcal{F}[x_1 \mapsto m_1, ..., x_n \mapsto m_n, y \mapsto m_y] \models \psi$. Define a function $f: M^n \to M$ such that f maps every $(m_1, ..., m_n)$ to the corresponding m_y . Define $\iota' = \iota \cup \{sk \mapsto f\}. ((M, \iota'), \sigma) \models \varphi'.$

Important: φ is satisfiable iff φ' is satisfiable (φ and φ' are **equisatisfiable**)

Skolemization

Theorem: For every sentence $\varphi \in FO_{\Sigma}$, there is an algorithm \mathscr{A} to construct an SNF sentence $\varphi_{snf} \in FO_{\Sigma'}$ such that Σ' contains all the symbols mentioned in Σ , and φ has a model over Σ iff φ_{snf} has a model over Σ' . **Proof**:

- 1. Construct a PNF equivalent ψ_i . If ψ_i does not contain an \exists quantifier, ψ_i is already in SNF. Output ψ_i as φ_{snf} .
- 2. Otherwise, there is a leftmost existential quantifier such that $\psi_i = \forall x_1 \dots \forall x_n . \exists y. [\xi]$. Skolemize ψ_i to get $\psi_{i+1} = \forall x_1 \dots \forall x_n . [\xi \{ sk_i(x_1, \dots, x_n)/y \}]$.
- 3. ψ_{i+1} has one fewer \exists than ψ_i . Repeat steps 1–3 with ψ_{i+1} .

Example:

 $\forall x. \ [\exists y. \ [\forall z. \ [\exists w. \ [P(x, y, z, w)]]]] \rightsquigarrow \forall x. \ [\forall z. \ [P(x, sk_1(x), z, sk_2(x, z))]]$

Use of normal forms

- We wish to establish logical consequence (Given Γ and φ , does $\Gamma \models \varphi$?)
- For PL, we did this via CNF and resolution
- Is there an analogue for FO?
- There is a Skolem Normal Form for all FO expressions
- Can cast every FO expression into Skolem CNF (SCNF)
- Easy to do; SNF body has a CNF equivalent
- Can we perform resolution on an SCNF expression?
- Need to handle quantifiers and free variables.

Imagine there's no variables...

- Consider the set $T^{g}(\Sigma)$ of all **ground** terms (i.e. without variables) over $\Sigma = (\mathscr{C}, \mathscr{F}, \mathscr{P})$ where $\mathscr{C} \neq \emptyset$.
- Expressions of the following forms are called ground literals
 - $P(t_1, ..., t_n)$ and $\neg P(t_1, ..., t_n)$, where $P \in \mathcal{P}$ and $t_1, ..., t_n \in T^g(\Sigma)$
- $T^{g}(\Sigma)$ generated by the grammar $t_{1}, ..., t_{n} \coloneqq c \in \mathcal{C} \mid f(t_{1}, ..., t_{n})$
- T^g(Σ) is called the Herbrand universe of FO_Σ
- A Herbrand structure is (T^g(Σ), ι_H) where ι_H gives meaning to the constant and function symbols in Σ as follows.
 - $\iota_H(c) = c$, for every $c \in \mathscr{C}$
 - $\iota_{\mathrm{H}}(f) = f$, for every $f \in \mathcal{F}$
- Can add similar meaning to symbols in \mathcal{P} , and get a Herbrand base.
- Ignore \equiv for the moment; we will handle it later.

Herbrand interpretation

- An assignment with a Herbrand base will yield an interpretation
- We interpreted *c* to be *c* and *f* to be *f* itself, under ι_H
- So what should our assignment function be a map (from \mathscr{V}) to?

Herbrand interpretation

- An assignment with a Herbrand base will yield an interpretation
- We interpreted *c* to be *c* and *f* to be *f* itself, under ι_H
- So what should our assignment function be a map (from \mathscr{V}) to?
- A **Herbrand interpretation** over Σ is of the form $((T^g(\Sigma), \iota_H), \sigma_H)$, where $\sigma_H : \mathcal{V} \to T^g(\Sigma)$.
- A Herbrand model for φ ∈ FO_Σ is a Herbrand base (which assigns meaning to symbols in 𝒫) along with σ_H such that φ is made true.
- Can lift this to sets of expressions as usual.

Pourquoi, Herbrand?

To talk about the satisfiability and validity of sets of ground qf formulae. **Theorem:** Let $\Sigma = (\mathscr{C}, \mathscr{F}, \mathscr{P})$ where $\mathscr{C} \neq \emptyset$, and let $L = \{\ell_1, ..., \ell_n\}$ be a non-empty finite set of ground literals. Then,

A triangle is satisfiable iff *L* does not contain both a literal and its negation.
A triangle t is never valid.
A triangle t is always satisfiable.
A triangle t is valid iff *L* contains both a literal and its negation.

Models for ground qf formulae

Proof sketch: We only show one case here. The others are easy and left as an **exercise**. Note that the literals in *L* are **ground**.

(1, ⇐): Suppose *L* does not contain $\{\ell, \neg \ell\}$ for any literal ℓ . We define a Herbrand model *H* for *L* as follows.

Start with $(T^{g}(\Sigma), \iota_{H})$, and construct a Herbrand base by assigning meaning to symbols in \mathcal{P} . Let $P \in \mathcal{P}$ be an *m*-ary predicate symbol. Define

 $\mathsf{P}_{\mathsf{H}} = \{(t_1, \dots, t_m) \in (\mathsf{T}^g(\Sigma))^m \mid P(t_1, \dots, t_m) \in L\}$

If $p(t_1, ..., t_m) \in L$, then $(t_1, ..., t_m) \in P_H$ and $H \models p(t_1, ..., t_m)$. However, if $\neg p(t_1, ..., t_m) \in L$, then $p(t_1, ..., t_m) \notin L$ (since *L* does not contain a literal and its negation), and so $(t_1, ..., t_m) \notin P_H$ and $H \neq p(t_1, ..., t_m)$. So $H \models \bigwedge_{1 \le i \le n} \ell_i$.

Herbrand's Theorem

Theorem: Let $\Sigma = (\mathscr{C}, \mathscr{F}, \mathscr{P})$ where $\mathscr{C} \neq \emptyset$. Let $\varphi = \forall x_1 \dots x_n$. $[\psi] \in FO_{\Sigma}$ be a sentence in SNF. Then, the following are equivalent.

1. φ has a model \longrightarrow 3. Γ^{g} has a model \uparrow 2. φ has a Herbrand model \longrightarrow 4. Γ^{g} has a Herbrand model

where $\Gamma^g = \{ \psi\{t_1/x_1, \dots, t_n/x_n\} \mid \{t_1, \dots, t_n\} \subseteq T^g(\Sigma) \}.$

Proof strategy: (2) implies (1) and (4) implies (3).

If φ has a Herbrand model, ψ is made true under all possible assignments of x_i to some term $u_i \in T^g(\Sigma)$. In particular, ψ is made true under the assignment which maps x_i to t_i for each i, so ψ has a Herbrand model, and so does any expression in Γ^g , by the Substitution Lemma. So (2) implies (4). Similarly, (1) implies (3).

So to prove the equivalence of (1)-(4), it is enough to show that (3) implies (2).

Herbrand's Theorem

Proof of Herbrand's Theorem: We want to show that if Γ^{g} has a model, then φ has a Herbrand model.

Let $\mathcal{F} \models \Gamma^{g}$. We start with $(T^{g}(\Sigma), \iota_{H})$ and construct a Herbrand base by assigning meaning to symbols in \mathcal{P} . Let $P \in \mathcal{P}$ be an *m*-ary predicate symbol. Define $P_{H} = \{(t_{1}, ..., t_{m}) \in (T^{g}(\Sigma))^{m} \mid \mathcal{F} \models P(t_{1}, ..., t_{m})\}.$

There are no free variables in φ , so this Herbrand base (along with any assignment $\sigma_{\rm H}$) satisfies all the **atomic sentences** satisfied by \mathcal{F} .

Exercise: Lift by induction to **arbitrary** sentences in SNF.

Thus, φ has a Herbrand model.

Using Herbrand's Theorem

- A sentence φ ∈ FO_Σ is satisfiable iff its SNF form φ_{snf} is satisfiable iff Γ^g is satisfied by a Herbrand model.
- **I**^g is an infinite set of ground qf expressions, if there is even one function symbol in **F**
- How do we check for satisfiability of Γ⁹?

Using Herbrand's Theorem

- A sentence φ ∈ FO_Σ is satisfiable iff its SNF form φ_{snf} is satisfiable iff Γ^g is satisfied by a Herbrand model.
- I^g is an infinite set of ground qf expressions, if there is even one function symbol in F
- How do we check for satisfiability of Γ^g?
- What do we know about the satisfiability of an infinite set of ground qf expressions?

Using Herbrand's Theorem

- A sentence φ ∈ FO_Σ is satisfiable iff its SNF form φ_{snf} is satisfiable iff Γ^g is satisfied by a Herbrand model.
- I^g is an infinite set of ground qf expressions, if there is even one function symbol in F
- How do we check for satisfiability of Γ^g?
- What do we know about the satisfiability of an infinite set of ground qf expressions?
- Use Compactness Theorem, in the contrapositive.
- Check all finite subsets to see if any unsatisfiable.
- Use resolution!