Lecture 12 - FO: Normal forms

Vaishnavi Sundararajan

COL703 - Logic for Computer Science

Recap: Towards a normal form

- Push all quantifiers out into one "block" at the head of the expression
- A **substitution** θ is a partial map from \mathcal{V} to $T(\Sigma)$, with a finite domain
- $\theta(t) = t$ for a term *t* in the language, if vars(*t*) \cap dom(θ) = Ø
- Often write $t\theta$ to mean $\theta(t)$; $t\theta$ is a "substitution instance" of *t*
- We often write $\theta = \{t/x \mid x\theta = t \text{ and } x \in \text{dom}(\theta)\}\$
- Read $\theta = \{t/x\}$ as "x is replaced by *t* under θ "
- **Substitution Lemma**: Given an interpretation $\mathcal{F} = ((M, \iota), \sigma)$ for some Σ , a term $t \in T(\Sigma)$, a formula $\varphi \in FO_{\Sigma}$, and a substitution $\{u/x\}$ such that $u^{\mathcal{J}} = m \in M$, the following hold:
	- $(t\{u/x\})^{\mathcal{F}} = t^{\mathcal{F}[x \mapsto m]}$
	- $\mathcal{F} \models \varphi \{u/x\}$ iff $\mathcal{F}[x \mapsto m] \models \varphi$.

Recap: Moving quantifiers out

- Want to move quantifiers into one block at the head of the expression
- **Theorem**: Let $z \notin fv(\varphi) \cup fv(\psi) \cup \{x_1, ..., x_n\}$, where $n \ge 0$. For Q_i ∈ {∀, ∃} for every $1 \le i \le n$, the following equivalences hold. $Q_1x_1 ... Q_nx_n$. $[\neg Qy. [\varphi]] \Leftrightarrow Q_1x_1 ... Q_nx_n$. *Qy*. $[\neg \varphi]$ $Q_1x_1 ... Q_nx_n$. [ψ ∘ *Qy*. [φ]] ⇔ $Q_1x_1 ... Q_nx_n$. *Qz.* [ψ ∘ φ{*z*/*y*}] $Q_1 x_1 ... Q_n x_n$. $[Qy. [\varphi] * \psi] \Leftrightarrow Q_1 x_1 ... Q_n x_n$. *Qz.* $[\varphi\{z/y\} * \psi]$ $Q_1x_1 ... Q_nx_n$. $[Qy. [\varphi] \supset \psi] \Leftrightarrow Q_1x_1 ... Q_nx_n$. $Qz. [\varphi\{z/y\} \supset \psi]$

where
$$
\circ \in \{\land, \lor, \supset\}
$$
, and $* \in \{\land, \lor\}$, and $\overline{Q} = \begin{cases} \exists & \text{if } Q = \forall \\ \forall & \text{if } Q = \exists \end{cases}$

Prenex Normal Form (PNF)

- PNF: FO expression where all quantifiers "appear at the front"
- $Q_1x_1...Q_nx_n$. [φ] is in PNF if φ is **quantifier-free (qf)**.
- Quantifier-free expressions $\subseteq FO_{\Sigma}$ generated by the below grammar. $\varphi, \psi \coloneqq t_1 \equiv t_2 \left| P(t_1, ..., t_n) \right| \neg \varphi \left| \varphi \wedge \psi \right| \varphi \vee \psi \left| \varphi \supset \psi \right|$ where *P* is an *n*-ary predicate symbol in Σ , and $t_i \in T(\Sigma)$ for all $1 \leq i \leq n$.
- $Q_1x_1 \dots Q_nx_n$ is the **prenex**; qf **body** φ contains only equality, predicates, and propositional connectives.
- **Theorem**: For any FO expression φ , there exists a logically equivalent Ψ such that Ψ is in Prenex Normal Form.

Skolem Normal Form (SNF)

- How does one check for satisfiability of a PNF expression?
- Choice of witness for ∃ might depend on value chosen for \forall if ∃ appears "deeper" than ∀
- Can we reduce (eliminate?!) this sequence of dependencies?
- Recall: For our ∃*y* example last time, value of *m* was a function of the value assigned to *x*. Use this!
- Move to **Skolem Normal Form**

Skolem Normal Form (SNF)

- PNF expression $Q_1x_1 ... Q_nx_n$. [φ] is in SNF if $Q_i = \forall$ for every $1 \leq i \leq n$.
- For ∀*x*1*xⁿ* .[φ] in SNF, we say that (qf) φ is the **body**
- What are we doing about the existential quantifiers?
- Intuition: Replace every ∃*y* by a "Skolem function" which computes *y* using all the (other) variables *y* depends on.
- Turn ∀*x*1*x*² … *xⁿ* .∃*y*. [φ] into ∀*x*1*x*² … *xⁿ* . [φ{*f^s* (*x*1 , … , *xⁿ*)/*y*}]

"For every x there exists y such that $\varphi(x, y)$ "

↓

"There is a function *sk* which maps any *x* into *y^s* such that for every *x*, $\varphi(x, sk(x))$ "

Skolem's Theorem

Recall that a model of $\varphi \in \mathsf{FO}_{\Sigma}$ is an interpretation $\mathcal F$ based on a Σ -structure M such that $\mathcal{F} \models \varphi$. We will refer to such a model as being "over Σ ".

Theorem: Let φ ∈ FO_Σ be of the form ∀*x*₁. [∀*x*₂. [… ∀*x_n*. [∃*y*. [ψ] …]]], such that $x_i \neq x_j$ for any $i \neq j$ and $x_i \neq y$ for any $1 \leqslant i \leqslant n$. Let $\Sigma' = (\mathscr{C}, \mathscr{F} \cup \{\mathrm{sk}\}, \mathscr{P})$ where $\Sigma = (\mathscr{C}, \mathscr{F}, \mathscr{P})$, and let $\varphi' = \forall x_1$. $[\forall x_2$. [... $\forall x_n$. $[\psi\{sk(x_1, ..., x_n)/y\}]$...]] $\in FO_{\Sigma'}$. Then,

- 1. Every model of φ' over Σ' is a model of φ over Σ' .
- 2. Every model of φ over Σ can be expanded to a model of φ' over Σ' .

Note that we place no structural restrictions on φ (need not be in any normal form) or on ψ (need not be qf).

Note also that $FO_{\Sigma} \subseteq FO_{\Sigma'}$.

Skolem's Theorem

Proof:

[\(1\)](#page-6-0) Any interpretation ${\mathcal{F}}$ over Σ' which satisfies ϕ' must provide meaning to all of Σ as well (and the extra symbol *sk* in Σ ′). So ℐ ⊧ φ also.

[\(2\)](#page-6-1) Consider any model $\mathcal{J} = ((M, \iota), \sigma)$ of φ . $\varphi = \forall x_1$. $[\forall x_2$. $[... \forall x_n$. $[\exists y]$. $[\psi]$...]]], so $\{x_1, ..., x_n, y\} \subseteq \text{fv}(\psi)$. Since $\mathcal{F} \models \varphi$, for every *n*-tuple $(m_1, ..., m_n) \in M^n$, there exists at least one $m_y \in M$ such that $\mathcal{F}[x_1 \mapsto m_1, ..., x_n \mapsto m_n, y \mapsto m_y] \models \psi$. Define a function f : M^n → *M* such that f maps every $(m_1, ..., m_n)$ to the corresponding m_y . Define ι' = ι ∪ {sk → f}. ((M, ι'), σ) ⊧ φ' .

Important: φ is satisfiable iff φ' is satisfiable (φ and φ' are **equisatisfiable**)

Skolemization

Theorem: For every sentence $\varphi \in FO_{\Sigma}$, there is an algorithm $\mathscr A$ to construct an SNF sentence $\varphi_{\text{snf}} \in \mathsf{FO}_{\Sigma'}$ such that Σ' contains all the symbols mentioned in Σ , and ϕ has a model over Σ iff $\phi_{\textit{snf}}$ has a model over Σ' . **Proof**:

- 1. Construct a PNF equivalent ψ*ⁱ* . If ψ*ⁱ* does not contain an ∃ quantifier, ψ*ⁱ* is already in SNF. Output ψ*ⁱ* as φ*snf*.
- 2. Otherwise, there is a leftmost existential quantifier such that ψ*ⁱ* = ∀*x*¹ . … ∀*xⁿ* .∃*y*.[ξ]. Skolemize ψ*ⁱ* to get $\psi_{i+1} = \forall x_1, ..., \forall x_n. [\xi\{sk_i(x_1, ..., x_n)/y\}].$
- 3. ψ*i*+¹ has one fewer ∃ than ψ*ⁱ* . Repeat steps [1](#page-8-0)[–3](#page-8-1) with ψ*i*+¹ .

Example:

∀*x*. [∃*y*. [∀*z*. [∃*w*. [*P*(*x*, *y*,*z*,*w*)]]]] ⇝ ∀*x*. [∀*z*. [*P*(*x*,*sk*¹ (*x*),*z*,*sk*² (*x*,*z*))]]

Use of normal forms

- We wish to establish logical consequence (Given Γ and φ , does $\Gamma \models \varphi$?)
- For PL, we did this via CNF and resolution
- Is there an analogue for FO?
- There is a Skolem Normal Form for all FO expressions
- Can cast every FO expression into **Skolem CNF (SCNF)**
- Easy to do; SNF body has a CNF equivalent
- Can we perform resolution on an SCNF expression?
- Need to handle quantifiers and free variables.

?

Imagine there's no variables...

- Consider the set T^g(Σ) of all **ground** terms (i.e. without variables) over $\Sigma = (\mathcal{C}, \mathcal{F}, \mathcal{P})$ where $\mathcal{C} \neq \emptyset$.
- Expressions of the following forms are called **ground literals**
	- $P(t_1, ..., t_n)$ and $\neg P(t_1, ..., t_n)$, where $P \in \mathcal{P}$ and $t_1, ..., t_n \in T^g(\Sigma)$
- T^g(Σ) generated by the grammar $t_1, ..., t_n := c \in \mathcal{C} \mid f(t_1, ..., t_n)$
- T^g(Σ) is called the **Herbrand universe** of FO_Σ
- A **Herbrand structure** is (T^g(Σ), ι_H) where ι_H gives meaning to the constant and function symbols in Σ as follows.
	- $\iota_H(c) = c$, for every $c \in \mathcal{C}$
	- $\iota_H(f) = f$, for every $f \in \mathcal{F}$
- Can add similar meaning to symbols in \mathcal{P} , and get a **Herbrand base**.
- Ignore \equiv for the moment; we will handle it later.

Herbrand interpretation

- An assignment with a Herbrand base will yield an interpretation
- We interpreted *c* to be *c* and *f* to be *f* itself, under ι_H
- So what should our assignment function be a map (from $\mathcal V$) to?

Herbrand interpretation

- An assignment with a Herbrand base will yield an interpretation
- We interpreted *c* to be *c* and *f* to be *f* itself, under μ
- So what should our assignment function be a map (from \mathcal{V}) to?
- A **Herbrand interpretation** over Σ is of the form $((T^g(\Sigma), H_H), \sigma_H)$, where $\sigma_H : \mathcal{V} \to T^g(\Sigma)$.
- A **Herbrand model** for $\varphi \in FO_{\Sigma}$ is a Herbrand base (which assigns meaning to symbols in \mathcal{P}) along with σ_H such that φ is made true.
- Can lift this to sets of expressions as usual.

Pourquoi, Herbrand?

To talk about the satisfiability and validity of sets of ground qf formulae. **Theorem**: Let $\Sigma = (\mathscr{C}, \mathscr{F}, \mathscr{P})$ where $\mathscr{C} \neq \emptyset$, and let $L = \{\ell_1, ..., \ell_n\}$ be a non-empty finite set of ground literals. Then,

1. $\bigwedge \ell_i$ is satisfiable iff *L* does not contain both a literal and its negation. 1⩽*i*⩽*n* 2. $\bigwedge \ell_i$ is never valid. 1⩽*i*⩽*n* 3. $\bigvee \ell_i$ is always satisfiable. 1⩽*i*⩽*n* 4. $\bigvee \ell_i$ is valid iff *L* contains both a literal and its negation. 1⩽*i*⩽*n*

Models for ground qf formulae

Proof sketch: We only show one case here. The others are easy and left as an **exercise**. Note that the literals in *L* are **ground**.

([1](#page-13-0), \Leftarrow): Suppose *L* does not contain { ℓ , $\neg \ell$ } for any literal ℓ . We define a Herbrand model *H* for *L* as follows.

Start with (T^g(Σ), ι_H), and construct a Herbrand base by assigning meaning to symbols in \mathcal{P} . Let $P \in \mathcal{P}$ be an *m*-ary predicate symbol. Define

 $P_H = \{(t_1, ..., t_m) \in (T^g(\Sigma))^m \mid P(t_1, ..., t_m) \in L\}$

If $p(t_1, ..., t_m)$ ∈ *L*, then $(t_1, ..., t_m)$ ∈ P_H and $H \models p(t_1, ..., t_m)$. However, if ¬*p*(*t*¹ , … , *tm*) ∊ *L*, then *p*(*t*¹ , … , *tm*) ∉ *L* (since *L* does not contain a literal and its negation), and so $(t_1, ..., t_m) \notin P_H$ and $H \neq p(t_1, ..., t_m)$. So $H \models \bigwedge_{1 \leq i \leq n} \ell_i$.

Herbrand's Theorem

Theorem: Let $\Sigma = (\mathscr{C}, \mathscr{F}, \mathscr{P})$ where $\mathscr{C} \neq \emptyset$. Let $\varphi = \forall x_1 \dots x_n$. $[\psi] \in \mathrm{FO}_{\Sigma}$ be a sentence in SNF. Then, the following are equivalent.

1. φ has a model 2. φ has a Herbrand model \longrightarrow 4. Γ^g has a Herbrand model 3. Γ *^g* has a model

 $where \Gamma^g = {\psi\{t_1/x_1, ..., t_n/x_n\} \mid {\{t_1, ..., t_n\}} \subseteq T^g(\Sigma)}$.

Proof strategy: [\(2\)](#page-15-0) implies [\(1\)](#page-15-1) and [\(4\)](#page-15-2) implies [\(3\)](#page-15-3). If φ has a Herbrand model, ψ is made true under all possible assignments of x_i to some term $u_i \in T^g(\Sigma)$. In particular, ψ is made true under the assignment which maps *xⁱ* to *tⁱ* for each *i*, so ψ has a Herbrand model, and so does any expression in Γ^g, by the Substitution Lemma. So [\(2\)](#page-15-0) implies [\(4\)](#page-15-2). Similarly, [\(1\)](#page-15-1) implies [\(3\)](#page-15-3).

So to prove the equivalence of $(1)-(4)$ $(1)-(4)$, it is enough to show that (3) implies (2) .

Herbrand's Theorem

Proof of Herbrand's Theorem: We want to show that if Γ *^g* has a model, then φ has a Herbrand model.

Let ℐ ⊧ Γ *g* . We start with (Τ *g* (Σ), ι*H*) and construct a Herbrand base by assigning meaning to symbols in \mathcal{P} . Let $P \in \mathcal{P}$ be an *m*-ary predicate symbol. Define $P_H = \{(t_1, ..., t_m) \in (T^g(\Sigma))^m \mid \mathcal{F} \models P(t_1, ..., t_m)\}.$

There are no free variables in φ , so this Herbrand base (along with any assignment σ*H*) satisfies all the **atomic sentences** satisfied by ℐ.

Exercise: Lift by induction to **arbitrary** sentences in SNF.

Thus, φ has a Herbrand model.

Using Herbrand's Theorem

- A sentence $\varphi \in \mathsf{FO}_{\Sigma}$ is satisfiable iff its SNF form φ_{snf} is satisfiable iff Γ^g is satisfied by a Herbrand model.
- Γ^g is an infinite set of ground qf expressions, if there is even one function symbol in ℱ
- How do we check for satisfiability of Γ^g?

Using Herbrand's Theorem

- A sentence $\varphi \in \mathsf{FO}_{\Sigma}$ is satisfiable iff its SNF form φ_{snf} is satisfiable iff Γ^g is satisfied by a Herbrand model.
- Γ^g is an infinite set of ground qf expressions, if there is even one function symbol in ℱ
- How do we check for satisfiability of Γ^g?
- What do we know about the satisfiability of an infinite set of ground qf expressions?

Using Herbrand's Theorem

- A sentence $\varphi \in \mathsf{FO}_{\Sigma}$ is satisfiable iff its SNF form φ_{snf} is satisfiable iff Γ^g is satisfied by a Herbrand model.
- Γ^g is an infinite set of ground qf expressions, if there is even one function symbol in ℱ
- How do we check for satisfiability of Γ^g?
- What do we know about the satisfiability of an infinite set of ground qf expressions?
- Use Compactness Theorem, in the contrapositive.
- Check all finite subsets to see if any unsatisfiable.
- Use resolution!