Lecture 11 - FO: Truth and models

Vaishnavi Sundararajan

COL703 - Logic for Computer Science

Vaishnavi

1/21

Recap: FOL Syntax

- We have a countable set of variables $x, y, z \dots \in \mathcal{V}$
- We have a countable set of function symbols *f*, *g*, *h* ... ∈ *F*, and a countable set of relation/predicate symbols *P*, *Q*, *R* ... ∈ *P*
- 0-ary function symbols are constant symbols in ${\mathscr C}$
- (\mathscr{C} , \mathscr{F} , \mathscr{P}) is a signature Σ
- Grammar for FOL is as follows

 $\varphi, \psi \coloneqq t_1 \equiv t_2 \mid P(t_1, \dots, t_n) \mid \neg \varphi \mid \varphi \land \psi \mid \varphi \lor \psi \mid \varphi \supset \psi \mid \exists x. \ [\varphi] \mid \forall x. \ [\varphi]$

where **P** is an **n**-ary predicate symbol in Σ , and the term syntax is

 $t \coloneqq x \in \mathcal{V} \mid c \in \mathcal{C} \mid f(t_1, \dots, t_m)$

where f is an m-ary function symbol in Σ .

Recap: Expressions, sentences, and formulae

- Notation: For a given Σ
 - the set of all expressions over Σ is denoted by FO_Σ
 - the set of all terms over Σ and \mathcal{V} is denoted by $T(\Sigma)$
- Defined notions of bound and free variables
- An expression is any wff generated by our FOL grammar
- A sentence is an expression with **no free variables**
- A formula is an expression with at least one free variable
- Rename bound variables to keep bound and free variables distinct!
- Keep variable names distinct within the same set (bound/free) also.
- We will assume this in whatever follows to simplify the presentation.
 - No $x \in \mathcal{V}$ appears both free and bound.
 - No $x \in \mathcal{V}$ is bound twice.

Recap: FOL Semantics

- Given a Σ = (𝔅, 𝓕, 𝒫), we define a Σ-structure 𝓜 as a pair (𝓜, ι), where 𝔄, the domain or universe of discourse, is a non-empty set, and ι is a function defined over 𝔅 ∪ 𝓕 ∪ 𝒫 such that
 - for every constant symbol $c \in \mathcal{C}$, there is $c_{\mathcal{M}} \in M$ s,t, $\iota(c) = c_{\mathcal{M}}$
 - for every *n*-ary function symbol $f \in \mathcal{F}$, $\iota(f) = f_{\mathcal{M}}$ s.t. $f_{\mathcal{M}} : M^n \to M$
 - for every *m*-ary predicate symbol $P \in \mathcal{P}$, $\iota(P) = P_{\mathcal{M}}$ s.t. $P_{\mathcal{M}} \subseteq M^m$.
- An **interpretation** for Σ is a pair $\mathcal{F} = (\mathcal{M}, \sigma)$, where
 - $\mathcal{M} = (M, \iota)$ is a Σ -structure, and
 - $\sigma : \mathcal{V} \to M$ is a function which maps variables in \mathcal{V} to elements of M.
- Each term *t* over Σ maps to a unique element $t^{\mathscr{F}}$ in *M* under \mathscr{F} .
 - If $t = x \in \mathcal{V}$, then $t^{\mathcal{F}} = \sigma(x)$
 - If $t = c \in C$, then $t^{\mathcal{F}} = c_{\mathcal{M}}$
 - If $t = f(t_1, ..., t_n)$ for some *n* terms $t_1, ..., t_n$ and an *n*-ary $f \in \mathcal{F}$, then $t^{\mathcal{G}} = f_{\mathcal{M}}(t_1^{\mathcal{G}}, ..., t_n^{\mathcal{G}})$

4/21

Recap: Satisfaction relation

- We denote the fact that an interpretation *F* = (*M*, *σ*) satisfies an expression φ ∈ FO_Σ by the familiar *F* ⊧ φ notation.
- We define this inductively, as usual, as follows.

$$\begin{aligned} \mathcal{I} \vDash t_1 &\equiv t_2 \text{ if } t_1^{\mathcal{I}} = t_2^{\mathcal{I}} \\ \mathcal{I} \vDash P(t_1, \dots, t_n) \text{ if } (t_1^{\mathcal{I}}, \dots, t_n^{\mathcal{I}}) \in \mathsf{P}_{\mathcal{M}} \\ \mathcal{I} \vDash \exists x. \ [\varphi] \text{ if there is some } m \in M \text{ such that } \mathcal{I}[x \mapsto m] \vDash \varphi \\ \mathcal{I} \vDash \forall x. \ [\varphi] \text{ if, for every } m \in M, \text{ it is the case that } \mathcal{I}[x \mapsto m] \vDash \varphi \end{aligned}$$

where we define $\mathscr{F}[x \mapsto m]$ to be (\mathscr{M}, σ') (where $\mathscr{F} = (\mathscr{M}, \sigma)$) such that $\mathscr{F} \models \neg \varphi \text{ if } \mathscr{F} \nvDash \varphi$ $\mathscr{F} \models \varphi \land \psi \text{ if } \mathscr{F} \models \varphi \text{ and } \mathscr{F} \models \psi$ $\mathscr{F} \models \varphi \lor \psi \text{ if } \mathscr{F} \models \varphi \text{ or } \mathscr{F} \models \psi$ $\mathscr{F} \models \varphi \lor \psi \text{ if } \mathscr{F} \models \varphi \text{ or } \mathscr{F} \models \psi$ $\mathscr{F} \models \varphi \lor \psi \text{ if } \mathscr{F} \models \varphi \text{ or } \mathscr{F} \models \psi$

Recap: Satisfiability and validity

- We say that φ ∈ FO_Σ is satisfiable if there is an interpretation *F* based on a Σ-structure *M* such that *F* ⊨ φ.
- We say that φ ∈ FO_Σ is valid if, for every Σ-structure *M* and every interpretation *F* based on *M*, it is the case that *F* ⊨ φ.
- A **model** of φ is an interpretation \mathcal{F} such that $\mathcal{F} \models \varphi$.
- We lift the notion of satisfiability to sets of formulas, and denote it by $\mathcal{F} \models X$, where $X \subseteq FO_{\Sigma}$.
- We say that $X \models \varphi$ (X **logically entails** φ) for $X \cup {\varphi} \subseteq FO_{\Sigma}$ if for every interpretation \mathcal{F} , if $\mathcal{F} \models X$ then $\mathcal{F} \models \varphi$.

Satisfiability

- As usual, want to check for satisfiability of a given FO expression over a signature Σ
- Need a Σ -structure \mathcal{M} , and a model \mathcal{F} based on \mathcal{M}
- In general, Σ will allow us to (somewhat) narrow down the expected application (arithmetic, graphs etc)
- But sometimes, unexpected models can come to light!

- Consider a signature $\Sigma = (\emptyset, \emptyset, P/2)$.
- Is $\varphi := \forall x$. $[\forall y. [\forall z. [(Pxy \land Pyz) \supset Pxz]]] \in FO_{\Sigma}$ satisfiable?

- Consider a signature $\Sigma = (\emptyset, \emptyset, P/2)$.
- Is $\varphi \coloneqq \forall x$. $[\forall y. [\forall z. [(Pxy \land Pyz) \supset Pxz]]] \in FO_{\Sigma}$ satisfiable?
- We define a candidate structure $\mathcal{M} = (M, \iota)$, where
 - $M = \{1, 2, 3\}$
 - $\iota(P) = \{(1,2), (2,3), (1,3)\}$
- Fix $\mathcal{F} = (\mathcal{M}, \sigma)$, where $\sigma(x) = 1$ for every $x \in \mathcal{V}$.
- Does $\mathcal{F} \models \forall x. \ [\forall y. \ [\forall z. \ [(Pxy \land Pyz) \supset Pxz]]]$?

- $\mathcal{M} = (\{1, 2, 3\}, \iota), \text{ with } \iota(P) = \{(1, 2), (2, 3), (1, 3)\}$
- Fix $\mathcal{F} = (\mathcal{M}, \sigma)$, where $\sigma(x) = 1$ for every $x \in \mathcal{V}$. (More on this later)
- Does $\mathcal{F} \models \forall x. \ [\forall y. \ [\forall z. \ [(Pxy \land Pyz) \supset Pxz]]]$?
- Need to check all possible instantiations of the universally quantified variables.
- One case:
 - Need to check if $\mathcal{F}[x \mapsto 1] \models \forall y. [\forall z. [(Pxy \land Pyz) \supset Pxz]]$
 - Need to check if $\mathcal{I}[x \mapsto 1, y \mapsto 1] \models \forall z. [(Pxy \land Pyz) \supset Pxz]$
 - Need to check if $\mathcal{F}[x \mapsto 1, y \mapsto 1, z \mapsto 1] \models (Pxy \land Pyz) \supset Pxz$
- Is this true?

- $\mathcal{M} = (\{1, 2, 3\}, \iota), \text{ with } \iota(P) = \{(1, 2), (2, 3), (1, 3)\}$
- Fix $\mathcal{F} = (\mathcal{M}, \sigma)$, where $\sigma(x) = 1$ for every $x \in \mathcal{V}$. (More on this later)
- Does $\mathcal{F} \models \forall x. \ [\forall y. \ [\forall z. \ [(Pxy \land Pyz) \supset Pxz]]]$?
- Need to check all possible instantiations of the universally quantified variables.
- One case:
 - Need to check if $\mathcal{F}[x \mapsto 1] \models \forall y$. $[\forall z. [(Pxy \land Pyz) \supset Pxz]]$
 - Need to check if $\mathcal{I}[x \mapsto 1, y \mapsto 1] \models \forall z. [(Pxy \land Pyz) \supset Pxz]$
 - Need to check if $\mathcal{F}[x \mapsto 1, y \mapsto 1, z \mapsto 1] \models (Pxy \land Pyz) \supset Pxz$
- Is this true? Yes! The precondition is false, so vacuously true.
- Many other cases are made vacuously true similarly.

- $\mathcal{M} = (\{1, 2, 3\}, \iota), \text{ with } \iota(P) = \{(1, 2), (2, 3), (1, 3)\}$
- Fix $\mathcal{F} = (\mathcal{M}, \sigma)$, where $\sigma(x) = 1$ for every $x \in \mathcal{V}$.
- Interesting case is when (m_1, m_2) and (m_2, m_3) are in $P_{\mathcal{M}}$.
- Could be a problem if $(m_1, m_3) \notin P_{\mathcal{M}}$
- Does $\mathcal{F}[x \mapsto 1, y \mapsto 2, z \mapsto 3] \models (Pxy \land Pyz) \supset Pxz$? Also yes!
- So $\mathcal{F} \models \varphi$, and φ is satisfiable.

- $\mathcal{M} = (\{1, 2, 3\}, \iota), \text{ with } \iota(P) = \{(1, 2), (2, 3), (1, 3)\}$
- Fix $\mathcal{F} = (\mathcal{M}, \sigma)$, where $\sigma(x) = 1$ for every $x \in \mathcal{V}$.
- Interesting case is when (m_1, m_2) and (m_2, m_3) are in $P_{\mathcal{M}}$.
- Could be a problem if $(m_1, m_3) \notin P_{\mathcal{M}}$
- Does $\mathcal{F}[x \mapsto 1, y \mapsto 2, z \mapsto 3] \models (Pxy \land Pyz) \supset Pxz$? Also yes!
- So $\mathcal{F} \models \varphi$, and φ is satisfiable. Is φ valid?

- $\mathcal{M} = (\{1, 2, 3\}, \iota), \text{ with } \iota(P) = \{(1, 2), (2, 3), (1, 3)\}$
- Fix $\mathcal{F} = (\mathcal{M}, \sigma)$, where $\sigma(x) = 1$ for every $x \in \mathcal{V}$.
- Interesting case is when (m_1, m_2) and (m_2, m_3) are in $P_{\mathcal{M}}$.
- Could be a problem if $(m_1, m_3) \notin P_{\mathcal{M}}$
- Does $\mathcal{F}[x \mapsto 1, y \mapsto 2, z \mapsto 3] \models (Pxy \land Pyz) \supset Pxz$? Also yes!
- So $\mathcal{F} \models \varphi$, and φ is satisfiable. Is φ valid?
- As always, easier to prove **invalidity**.
- $\mathcal{M}' = (\{1, 2, 3\}, \iota'), \text{ with } \iota'(P) = \{(1, 2), (2, 3), (3, 1)\}$
- **Exercise**: Show that $(\mathcal{M}', \sigma') \not\models \varphi$ (for any σ' !)
- φ is true exactly when the binary relation is transitive.

• Is $\psi := \forall x$. $[\exists y. [Pxy \land \forall z. [Pxz \supset y \equiv z]]]$ satisfiable?

- Is $\psi := \forall x$. $[\exists y. [Pxy \land \forall z. [Pxz \supset y \equiv z]]]$ satisfiable?
- $\mathcal{F} = (\mathcal{M}', \sigma)$ exactly as in the previous example.
- Does $\mathcal{F} \models \psi$? Consider a "first" case.
- Need to check if $\mathcal{F}[x \mapsto 1] \models \exists y. [Pxy \land \forall z. [Pxz \supset y \equiv z]]$
- Need to check if there is some $m \in \{1, 2, 3\}$ such that $\mathcal{F}[x \mapsto 1, y \mapsto m] \models Pxy \land \forall z. [Pxz \supset y \equiv z]$
- Need to check if there is some $m \in \{1, 2, 3\}$ such that $\mathcal{F}[x \mapsto 1, y \mapsto m] \models Pxy$ and $\mathcal{F}[x \mapsto 1, y \mapsto m] \models \forall z. [Pxz \supset y \equiv z]$
- Which *m*? Not sure yet.

- Is $\psi := \forall x$. $[\exists y. [Pxy \land \forall z. [Pxz \supset y \equiv z]]]$ satisfiable?
- $\mathcal{F} = (\mathcal{M}', \sigma)$ exactly as in the previous example.
- Does $\mathcal{F} \models \psi$? Consider a "first" case.
- Need to check if $\mathcal{F}[x \mapsto 1] \models \exists y. [Pxy \land \forall z. [Pxz \supset y \equiv z]]$
- Need to check if there is some $m \in \{1, 2, 3\}$ such that $\mathcal{F}[x \mapsto 1, y \mapsto m] \models Pxy \land \forall z. [Pxz \supset y \equiv z]$
- Need to check if there is some $m \in \{1, 2, 3\}$ such that $\mathcal{F}[x \mapsto 1, y \mapsto m] \models Pxy$ and $\mathcal{F}[x \mapsto 1, y \mapsto m] \models \forall z. [Pxz \supset y \equiv z]$
- Which *m*? Not sure yet. But same *m* for both!

- $\mathcal{M}' = (\{1, 2, 3\}, \iota'), \iota'(P) = \{(1, 2), (2, 3), (3, 1)\}$
- Let's try m = 1.
- Need to check if $\mathscr{F}[x \mapsto 1, y \mapsto 1] \models Pxy$ and $\mathscr{F}[x \mapsto 1, y \mapsto 1, z \mapsto 1] \models Pxz \supset y \equiv z$

- $\mathcal{M}' = (\{1, 2, 3\}, \iota'), \iota'(P) = \{(1, 2), (2, 3), (3, 1)\}$
- Let's try m = 1.
- Need to check if $\mathscr{F}[x \mapsto 1, y \mapsto 1] \models Pxy$ and $\mathscr{F}[x \mapsto 1, y \mapsto 1, z \mapsto 1] \models Pxz \supset y \equiv z$
- Vacuously true! Interesting case is when *x* and *z* are "in the relation"
- Need to check if $\mathscr{F}[x \mapsto 1, y \mapsto 1] \models Pxy$ and $\mathscr{F}[x \mapsto 1, y \mapsto 1, z \mapsto 2] \models Pxz \supset y \equiv z$

- $\mathcal{M}' = (\{1, 2, 3\}, \iota'), \iota'(P) = \{(1, 2), (2, 3), (3, 1)\}$
- Let's try m = 1.
- Need to check if $\mathscr{F}[x \mapsto 1, y \mapsto 1] \models Pxy$ and $\mathscr{F}[x \mapsto 1, y \mapsto 1, z \mapsto 1] \models Pxz \supset y \equiv z$
- Vacuously true! Interesting case is when *x* and *z* are "in the relation"
- Need to check if $\mathscr{F}[x \mapsto 1, y \mapsto 1] \models Pxy$ and $\mathscr{F}[x \mapsto 1, y \mapsto 1, z \mapsto 2] \models Pxz \supset y \equiv z$
- Not true! $(1, 2) \in \iota'(P)$, but $1 \neq 2$
- What if m = 3?

- $\mathcal{M}' = (\{1, 2, 3\}, \iota'), \iota'(P) = \{(1, 2), (2, 3), (3, 1)\}$
- Let's try m = 1.
- Need to check if $\mathscr{F}[x \mapsto 1, y \mapsto 1] \models Pxy$ and $\mathscr{F}[x \mapsto 1, y \mapsto 1, z \mapsto 1] \models Pxz \supset y \equiv z$
- Vacuously true! Interesting case is when *x* and *z* are "in the relation"
- Need to check if $\mathscr{F}[x \mapsto 1, y \mapsto 1] \models Pxy$ and $\mathscr{F}[x \mapsto 1, y \mapsto 1, z \mapsto 2] \models Pxz \supset y \equiv z$
- Not true! $(1, 2) \in \iota'(P)$, but $1 \neq 2$
- What if m = 3? Also does not work. $(1, 2) \in \iota'(P)$, but $3 \neq 2$

- Taking *m* to be 2 works. (Work it out!)
- So $\mathcal{F} \models \psi$, and ψ is satisfiable.
- For each value *u* assigned to *x*, take *m* to be *v* such that $(u, v) \in \iota'(P)$
- Value of *m* is a function of the value assigned to *x* (This will be important later!)
- **Important**: The value of *m* changes with the value assigned to *x*
- Essentially the difference between $\forall x$. $[\exists y$. [...]] and $\exists y$. $[\forall x$. [...]]
- **Exercise**: What property of the structure does ψ code up?
- **Exercise**: Is ψ valid?

• Is $\chi(x) \coloneqq \forall y$. $[\neg(x \equiv y) \supset (Pxy \land \neg Pyx)]$ satisfiable?

- Is $\chi(x) \coloneqq \forall y$. $[\neg(x \equiv y) \supset (Pxy \land \neg Pyx)]$ satisfiable?
- We define a candidate structure $\mathcal{M} = (M, \iota)$, where
 - $M = \{1, 2, 3\}$
 - $\iota(P) = \{(2,1), (2,3), (3,3)\}$
- Fix $\mathcal{F} = (\mathcal{M}, \sigma)$, where

- Is $\chi(x) \coloneqq \forall y$. $[\neg(x \equiv y) \supset (Pxy \land \neg Pyx)]$ satisfiable?
- We define a candidate structure $\mathcal{M} = (M, \iota)$, where
 - $M = \{1, 2, 3\}$
 - $\iota(P) = \{(2,1), (2,3), (3,3)\}$
- Fix $\mathcal{F} = (\mathcal{M}, \sigma)$, where $\sigma(x) = 2$ and $\sigma(y) = 1$ for all **other** $y \in \mathcal{V}$.
- Does $\mathcal{F} \models \forall y$. $[\neg(x \equiv y) \supset (Pxy \land \neg Pyx)]$?
- "First" case: Need to check if $\mathcal{F}[y \mapsto 1] \models \neg(x \equiv y) \supset (Pxy \land \neg Pyx)$

- $\mathcal{M} = (\{1, 2, 3\}, \iota)$ with $\iota(P) = \{(2, 1), (2, 3), (3, 3)\}$
- $\sigma(x) = 2$ and $\sigma(y) = 1$ for all **other** $y \in \mathcal{V}$.
- "First" case: Need to check if $\mathcal{F}[y \mapsto 1] \models \neg(x \equiv y) \supset (Pxy \land \neg Pyx)$
- Same as checking if

 $(\mathcal{M}, [x \mapsto 2, y \mapsto 1, _ \mapsto 1]) \models \neg(x \equiv y) \supset (Pxy \land \neg Pyx)$

- $\mathcal{M} = (\{1, 2, 3\}, \iota)$ with $\iota(P) = \{(2, 1), (2, 3), (3, 3)\}$
- $\sigma(x) = 2$ and $\sigma(y) = 1$ for all **other** $y \in \mathcal{V}$.
- "First" case: Need to check if $\mathcal{F}[y \mapsto 1] \models \neg(x \equiv y) \supset (Pxy \land \neg Pyx)$
- Same as checking if $(\mathcal{M}, [x \mapsto 2, y \mapsto 1, _ \mapsto 1]) \models \neg(x \equiv y) \supset (Pxy \land \neg Pyx)$
- Other cases also work out! So $\mathcal{F} \models \chi(x)$.
- Let $\sigma'(x) = 2$ and $\sigma'(y) = 3$ for all other $y \in \mathcal{V}$. Does $(\mathcal{M}, \sigma') \models \chi(x)$?

- $\mathcal{M} = (\{1, 2, 3\}, \iota)$ with $\iota(P) = \{(2, 1), (2, 3), (3, 3)\}$
- $\sigma(x) = 2$ and $\sigma(y) = 1$ for all **other** $y \in \mathcal{V}$.
- "First" case: Need to check if $\mathcal{F}[y \mapsto 1] \models \neg(x \equiv y) \supset (Pxy \land \neg Pyx)$
- Same as checking if $(\mathcal{M}, [x \mapsto 2, y \mapsto 1, _ \mapsto 1]) \models \neg(x \equiv y) \supset (Pxy \land \neg Pyx)$
- Other cases also work out! So $\mathcal{F} \models \chi(x)$.
- Let $\sigma'(x) = 2$ and $\sigma'(y) = 3$ for all other $y \in \mathcal{V}$. Does $(\mathcal{M}, \sigma') \models \chi(x)$?
- Let $\sigma''(x) = 3$ and $\sigma''(y) = 1$ for all other $y \in \mathcal{V}$. Does $(\mathcal{M}, \sigma'') \models \chi(x)$?
- **Exercise**: Is $\chi(x)$ valid? What would it mean for $\chi(x)$ to be valid?

- Can talk about satisfiability for a set of sentences (called a theory)
- Fix a signature $\Sigma = (\{\varepsilon\}, \{f/2\}, \emptyset)$
- Consider the following sentences:

 $\begin{aligned} \forall x. \ [\forall y. \ [\forall z. \ [f(f(x, y), z) \equiv f(x, f(y, z))]]] \\ \forall x. \ [f(x, \varepsilon) \equiv x] \\ \forall x. \ [\exists y. \ [f(x, y) \equiv \varepsilon]] \end{aligned}$

• Is there an interpretation that is a model for all three?

Satisfiability of formulae and sentences

- Earlier example with $\chi(x)$: Both (\mathcal{M}, σ) and (\mathcal{M}, σ') were models
- Only required that σ and σ' agreed on $fv(\chi(x))$
- Recall: only considered PL valuations restricted to atoms of expression
- **Theorem**: Let Σ be an FO signature and $\varphi \in FO_{\Sigma}$. Let \mathscr{M} be a Σ -structure and σ, σ' assignments which agree on $fv(\varphi)$. Then $(\mathscr{M}, \sigma) \models \varphi$ iff $(\mathscr{M}, \sigma') \models \varphi$. Proof: **Exercise!**
- Can we now say something about the satisfiability of **sentences**?

Satisfiability of formulae and sentences

- Earlier example with $\chi(x)$: Both (\mathcal{M}, σ) and (\mathcal{M}, σ') were models
- Only required that σ and σ' agreed on $fv(\chi(x))$
- Recall: only considered PL valuations restricted to atoms of expression
- **Theorem**: Let Σ be an FO signature and $\varphi \in FO_{\Sigma}$. Let \mathcal{M} be a Σ -structure and σ, σ' assignments which agree on $fv(\varphi)$. Then $(\mathcal{M}, \sigma) \models \varphi$ iff $(\mathcal{M}, \sigma') \models \varphi$. Proof: **Exercise!**
- Can we now say something about the satisfiability of **sentences**?
- Corollary: Let Σ be an FO signature and φ ∈ FO_Σ be a sentence. Let M be a Σ-structure. Then, for any assignments σ, σ', it is the case that (M, σ) ⊨ φ iff (M, σ') ⊨ φ.

Satisfiability in general

- Recall what we did for satisfiability and validity in PL
- Cast PL expression into CNF, then did resolution
- If a PL expression is in DNF, checking for satisfiability is easy
- Normal forms are useful in general from an automation perspective!
- Easier to handle for algorithms
 - Especially if one can algorithmically obtain the normal form also!
- What does a normal form look like for FO? Are there many such?
- First, some notational shorthand going forward.
- Use $\forall x_1 x_2 \dots x_n$ as shorthand for $\forall x_1$. [$\forall x_2$. [... $\forall x_n$. [...] ...]]
- Omit brackets when clear from context.

Towards a normal form

- Handling nested quantifiers took some doing, maybe get rid of that?
- Cannot get rid of quantifiers entirely without assignment
- So what is the next best thing we might try?

Towards a normal form

- Handling nested quantifiers took some doing, maybe get rid of that?
- Cannot get rid of quantifiers entirely without assignment
- So what is the next best thing we might try?
- Push all quantifiers out into one "block" at the head of the expression
- Do all instantiations upfront; then evaluate the resultant expression
- Recall: Can always push negation inside the quantifier
- Can we do this for other connectives also?
- But first, we need to talk about substitutions

Substitutions

- A **substitution** θ is a partial map from \mathcal{V} to $T(\Sigma)$, with a finite domain
- We can lift this to terms, inductively as usual (Exercise!)
- $\theta(t) = t$ for a term t in the language, if $vars(t) \cap dom(\theta) = \emptyset$
- Often write $t\theta$ to mean $\theta(t)$; $t\theta$ is a "substitution instance" of t
- We often write $\theta = \{t/x \mid x\theta = t \text{ and } x \in dom(\theta)\}$
- What effect does θ have on the semantics of expressions?
- **Theorem**: Given an interpretation $\mathcal{F} = ((M, \iota), \sigma)$ for some Σ , a term $t \in T(\Sigma)$, and a substitution $\{u/x\}$ such that $u^{\mathcal{F}} = m \in M$, it is the case that $(t\{u/x\})^{\mathcal{F}} = t^{\mathcal{F}[x \mapsto m]}$. Proof: **Exercise!**
- Lift to expressions as usual; ensure distinct bound and free variables.
- A substitution θ is admissible for a term t (resp. an expression φ) if vars(rng(θ)) ∩ vars(t) = Ø (resp. vars(rng(θ)) ∩ vars(φ) = Ø).

Back to normal forms

- Want to move quantifiers into one block at the head of the expression
- **Theorem**: Let $z \notin fv(\varphi) \cup fv(\psi) \cup \{x_1, ..., x_n\}$, where $n \ge 0$. For $Q_i \in \{\forall, \exists\}$ for every $1 \le i \le n$, the following equivalences hold. $Q_1x_1 ... Q_nx_n$. $[\neg Qy. [\varphi]] \Leftrightarrow Q_1x_1 ... Q_nx_n$. $\overline{Q}y. [\neg \varphi]$ $Q_1x_1 ... Q_nx_n$. $[\psi \circ Qy. [\varphi]] \Leftrightarrow Q_1x_1 ... Q_nx_n$. $Qz. [\psi \circ \varphi\{z/y\}]$ $Q_1x_1 ... Q_nx_n$. $[Qy. [\varphi] * \psi] \Leftrightarrow Q_1x_1 ... Q_nx_n$. $Qz. [\varphi\{z/y\} * \psi]$ $Q_1x_1 ... Q_nx_n$. $[Qy. [\varphi] \supset \psi] \Leftrightarrow Q_1x_1 ... Q_nx_n$. $\overline{Q}z. [\varphi\{z/y\} \supset \psi]$

where $\circ \in \{\Lambda, \vee, \supset\}$, and $* \in \{\Lambda, \vee\}$, and $\overline{Q} = \begin{cases} \exists & \text{if } Q = \forall \\ \forall & \text{if } Q = \exists \end{cases}$