Lecture 11 - FO: Truth and models

Vaishnavi Sundararajan

COL703 - Logic for Computer Science

Recap: FOL Syntax

- We have a countable set of variables $x, y, z ... \in \mathcal{V}$
- We have a countable set of function symbols *f*, *g*, *h* … ∊ ℱ, and a countable set of relation/predicate symbols *P*, *Q*, *R* … ∊
- 0-ary function symbols are constant symbols in $\mathscr C$
- (C, F, P) is a signature Σ
- Grammar for FOL is as follows

 $\varphi, \psi \coloneqq t_1 \equiv t_2 \left[P(t_1, ..., t_n) \mid \neg \varphi \mid \varphi \land \psi \mid \varphi \lor \psi \mid \varphi \supset \psi \mid \exists x. \left[\varphi \right] \mid \forall x. \left[\varphi \right]$

where *P* is an *n*-ary predicate symbol in Σ , and the term syntax is

 $t \coloneqq x \in \mathcal{V} \mid c \in \mathcal{C} \mid f(t_1, ..., t_m)$

where *f* is an *m*-ary function symbol in Σ.

Recap: Expressions, sentences, and formulae

- Notation: For a given Σ
	- the set of all expressions over Σ is denoted by FO_{Σ}
	- the set of all terms over Σ and $\mathcal V$ is denoted by $T(\Sigma)$
- Defined notions of bound and free variables
- An **expression** is any wff generated by our FOL grammar
- A **sentence** is an expression with **no free variables**
- A **formula** is an expression with **at least one free variable**
- Rename bound variables to keep bound and free variables distinct!
- Keep variable names distinct within the same set (bound/free) also.
- We will assume this in whatever follows to simplify the presentation.
	- No $x \in \mathcal{V}$ appears both free and bound.
	- No $x \in \mathcal{V}$ is bound twice.

Recap: FOL Semantics

- Given a $\Sigma = (\mathcal{C}, \mathcal{F}, \mathcal{P})$, we define a Σ **-structure** M as a pair (M, ι) , where *M*, the **domain** or **universe** of discourse, is a non-empty set, and \mathbf{l} is a function defined over $\mathcal{C} \cup \mathcal{F} \cup \mathcal{P}$ such that
	- for every constant symbol $c \in \mathcal{C}$, there is $c_M \in M$ s,t, $\iota(c) = c_M$
	- for every *n*-ary function symbol $f \in \mathcal{F}$, $\iota(f) = f_M$ s.t. $f_M : M^n \to M$
	- for every *m*-ary predicate symbol $P \in \mathcal{P}$, $\iota(P) = P_M$ s.t. $P_M \subseteq M^m$.
- An **interpretation** for Σ is a pair $\mathcal{J} = (\mathcal{M}, \sigma)$, where
	- $\mathcal{M} = (M, \iota)$ is a Σ -structure, and
	- $\sigma : \mathcal{V} \to M$ is a function which maps variables in \mathcal{V} to elements of *M*.
- Each term t over Σ maps to a unique element t[∮] in M under *F*.
	- If $t = x \in \mathcal{V}$, then $t^{\mathcal{F}} = \sigma(x)$
	- If $t = c \in C$, then $t^{\mathcal{J}} = c_{\mathcal{M}}$
	- If $t = f(t_1, ..., t_n)$ for some *n* terms $t_1, ..., t_n$ and an *n*-ary $f \in \mathcal{F}$, then $t^{\mathcal{F}} = f_{\mathcal{M}}(t_1^{\mathcal{F}},...,t_n^{\mathcal{F}})$

Recap: Satisfaction relation

- We denote the fact that an interpretation $\mathcal{F} = (\mathcal{M}, \sigma)$ **satisfies** an expression $\varphi \in FO_{\Sigma}$ by the familiar $\mathcal{F} \models \varphi$ notation.
- We define this inductively, as usual, as follows.

σ(*z*) otherwise

 $\mathcal{J} \models t_1 \equiv t_2 \text{ if } t_1^{\mathcal{J}} = t_2^{\mathcal{J}}$ $\mathcal{F} \models P(t_1, ..., t_n)$ if $(t_1^{\mathcal{F}}, ..., t_n^{\mathcal{F}}) \in P_{\mathcal{M}}$ $\mathcal{J} \models \exists x$. $[\emptyset]$ if there is some $m \in M$ such that $\mathcal{J}[x \mapsto m] \models \emptyset$ $\mathcal{F} \models \forall x$. $[\varphi]$ if, for every $m \in M$, it is the case that $\mathcal{F}[x \mapsto m] \models \varphi$ where we define $\mathcal{F}[x \mapsto m]$ to be (\mathcal{M}, σ') (where $\mathcal{J} = (\mathcal{M}, \sigma)$) such that $\sigma'(z) = \left\{ \right.$ *m z* = *x* \mathcal{J} ⊧ ¬φ if \mathcal{J} ⊭ φ $\mathcal{F} \models \varphi \land \psi$ if $\mathcal{F} \models \varphi$ and $\mathcal{F} \models \psi$ $\mathcal{F} \models \varphi \vee \psi$ if $\mathcal{F} \models \varphi$ or $\mathcal{F} \models \psi$

 $\mathcal{F} \models \varphi \supset \psi$ if $\mathcal{F} \not\models \varphi$ or $\mathcal{F} \models \psi$

Recap: Satisfiability and validity

- We say that $\varphi \in \mathsf{FO}_{\Sigma}$ is **satisfiable** if there is an interpretation \mathcal{F} based on a Σ -structure M such that $\mathcal{F} \models \varphi$.
- We say that $\varphi \in FO_{\Sigma}$ is **valid** if, for every *Σ*-structure *M* and every interpretation *I* based on *M*, it is the case that $\mathcal{I} \models \varphi$.
- A **model** of φ is an interpretation \mathcal{F} such that $\mathcal{F} \models \varphi$.
- We lift the notion of satisfiability to sets of formulas, and denote it by \mathcal{F} ⊧ *X*, where *X* ⊆ FO_Σ.
- We say that $X \models \varphi$ (*X* **logically entails** φ) for $X \cup {\varphi} \subseteq FO_{\Sigma}$ if for every interpretation \mathcal{F} , if $\mathcal{F} \models X$ then $\mathcal{F} \models \varphi$.

Satisfiability

- As usual, want to check for satisfiability of a given FO expression over a signature Σ
- Need a Σ -structure M , and a model $\mathcal J$ based on M
- In general, Σ will allow us to (somewhat) narrow down the expected application (arithmetic, graphs etc)
- But sometimes, unexpected models can come to light!

- Consider a signature $\Sigma = (\emptyset, \emptyset, P/2)$.
- Is $\varphi \coloneqq \forall x$. $[\forall y$. $[\forall z$. $[(Pxy \land Pyz) \supset Pxz]]$ $\in FO_{\Sigma}$ satisfiable?

- Consider a signature $\Sigma = (\emptyset, \emptyset, P/2)$.
- Is $\varphi = \forall x$. $[\forall y$. $[\forall z$. $[(Px \vee Ryz) \supset Pxz]]$ $\in FO_{\Sigma}$ satisfiable?
- We define a candidate structure $M = (M, \iota)$, where
	- $M = \{1, 2, 3\}$
	- $I(P) = \{(1, 2), (2, 3), (1, 3)\}$
- Fix $\mathcal{J} = (\mathcal{M}, \sigma)$, where $\sigma(x) = 1$ for every $x \in \mathcal{V}$.
- Does ℐ ⊧ ∀*x*. [∀*y*. [∀*z*. [(*Pxy* ∧ *Pyz*) ⊃ *Pxz*]]]?

- $\mathcal{M} = (\{1, 2, 3\}, \iota)$, with $\iota(P) = \{(1, 2), (2, 3), (1, 3)\}\$
- Fix $\mathcal{J} = (\mathcal{M}, \sigma)$, where $\sigma(x) = 1$ for every $x \in \mathcal{V}$. (More on this later)
- Does ℐ ⊧ ∀*x*. [∀*y*. [∀*z*. [(*Pxy* ∧ *Pyz*) ⊃ *Pxz*]]]?
- Need to check all possible instantiations of the universally quantified variables.
- One case:
	- Need to check if ℐ[*x* ↦ 1] ⊧ ∀*y*. [∀*z*. [(*Pxy* ∧ *Pyz*) ⊃ *Pxz*]]
	- Need to check if $\mathcal{F}[x \mapsto 1, y \mapsto 1] \models \forall z$. $[(Pxy \wedge Pyz) \supset Pxz]$
	- Need to check if $\mathcal{F}[x \mapsto 1, y \mapsto 1, z \mapsto 1] \models (Pxy \wedge Pyz) \supset Pxz$
- Is this true?

- $\mathcal{M} = (\{1, 2, 3\}, \iota)$, with $\iota(P) = \{(1, 2), (2, 3), (1, 3)\}\$
- Fix $\mathcal{J} = (\mathcal{M}, \sigma)$, where $\sigma(x) = 1$ for every $x \in \mathcal{V}$. (More on this later)
- Does ℐ ⊧ ∀*x*. [∀*y*. [∀*z*. [(*Pxy* ∧ *Pyz*) ⊃ *Pxz*]]]?
- Need to check all possible instantiations of the universally quantified variables.
- One case:
	- Need to check if ℐ[*x* ↦ 1] ⊧ ∀*y*. [∀*z*. [(*Pxy* ∧ *Pyz*) ⊃ *Pxz*]]
	- Need to check if $\mathcal{F}[x \mapsto 1, y \mapsto 1] \models \forall z$. $[(Pxy \wedge Pyz) \supset Pxz]$
	- Need to check if $\mathcal{F}[x \mapsto 1, y \mapsto 1, z \mapsto 1] \models (Pxy \wedge Pyz) \supset Pxz$
- Is this true? Yes! The precondition is false, so vacuously true.
- Many other cases are made vacuously true similarly.

- $\mathcal{M} = (\{1, 2, 3\}, \iota)$, with $\iota(P) = \{(1, 2), (2, 3), (1, 3)\}\$
- Fix $\mathcal{J} = (\mathcal{M}, \sigma)$, where $\sigma(x) = 1$ for every $x \in \mathcal{V}$.
- Interesting case is when (m_1, m_2) and (m_2, m_3) are in P_M .
- Could be a problem if $(m_1, m_3) \notin P_M$
- Does ℐ[*x* ↦ 1, *y* ↦ 2,*z* ↦ 3] ⊧ (*Pxy* ∧ *Pyz*) ⊃ *Pxz*? Also yes!
- So $\mathcal{F} \models \varphi$, and φ is satisfiable.

- $\mathcal{M} = (\{1, 2, 3\}, \iota)$, with $\iota(P) = \{(1, 2), (2, 3), (1, 3)\}\$
- Fix $\mathcal{J} = (\mathcal{M}, \sigma)$, where $\sigma(x) = 1$ for every $x \in \mathcal{V}$.
- Interesting case is when (m_1, m_2) and (m_2, m_3) are in P_M .
- Could be a problem if $(m_1, m_3) \notin P_M$
- Does ℐ[*x* ↦ 1, *y* ↦ 2,*z* ↦ 3] ⊧ (*Pxy* ∧ *Pyz*) ⊃ *Pxz*? Also yes!
- So $\mathcal{F} \models \varphi$, and φ is satisfiable. Is φ valid?

- $\mathcal{M} = (\{1, 2, 3\}, \iota)$, with $\iota(P) = \{(1, 2), (2, 3), (1, 3)\}\$
- Fix $\mathcal{J} = (\mathcal{M}, \sigma)$, where $\sigma(x) = 1$ for every $x \in \mathcal{V}$.
- Interesting case is when (m_1, m_2) and (m_2, m_3) are in P_M .
- Could be a problem if $(m_1, m_3) \notin P_M$
- Does ℐ[*x* ↦ 1, *y* ↦ 2,*z* ↦ 3] ⊧ (*Pxy* ∧ *Pyz*) ⊃ *Pxz*? Also yes!
- So $\mathcal{F} \models \varphi$, and φ is satisfiable. Is φ valid?
- As always, easier to prove **invalidity**.
- $M' = (\{1, 2, 3\}, \iota'), \text{with } \iota'(P) = \{(1, 2), (2, 3), (3, 1)\}\$
- **Exercise**: Show that $(\mathcal{M}', \sigma') \not\models \varphi$ (for any σ' !)
- \bullet φ is true exactly when the binary relation is transitive.

• Is ψ ≔ ∀*x*. [∃*y*. [*Pxy* ∧ ∀*z*. [*Pxz* ⊃ *y* ≡ *z*]]] satisfiable?

- Is ψ ≔ ∀*x*. [∃*y*. [*Pxy* ∧ ∀*z*. [*Pxz* ⊃ *y* ≡ *z*]]] satisfiable?
- $\mathcal{J} = (\mathcal{M}', \sigma)$ exactly as in the previous example.
- Does $\mathcal{F} \models \psi$? Consider a "first" case.
- Need to check if $\mathcal{I}[x \mapsto 1] \models \exists y$. [*Pxy* $\land \forall z$. [*Pxz* $\supset y \equiv z$]]
- Need to check if there is some $m \in \{1, 2, 3\}$ such that $\mathcal{F}[x \mapsto 1, y \mapsto m]$ ⊧ $Pxy \wedge \forall z$. $[Pxz \supset y \equiv z]$
- Need to check if there is some $m \in \{1, 2, 3\}$ such that $\mathcal{F}[x \mapsto 1, y \mapsto m] \models Pxy$ and $\mathcal{F}[x \mapsto 1, y \mapsto m] \models \forall z$. $[Pxz \supset y \equiv z]$
- Which *m*? Not sure yet.

- Is ψ ≔ ∀*x*. [∃*y*. [*Pxy* ∧ ∀*z*. [*Pxz* ⊃ *y* ≡ *z*]]] satisfiable?
- $\mathcal{J} = (\mathcal{M}', \sigma)$ exactly as in the previous example.
- Does $\mathcal{F} \models \psi$? Consider a "first" case.
- Need to check if $\mathcal{I}[x \mapsto 1] \models \exists y$. [*Pxy* $\land \forall z$. [*Pxz* $\supset y \equiv z$]]
- Need to check if there is some $m \in \{1, 2, 3\}$ such that $\mathcal{F}[x \mapsto 1, y \mapsto m]$ ⊧ $Pxy \wedge \forall z$. $[Pxz \supset y \equiv z]$
- Need to check if there is some $m \in \{1, 2, 3\}$ such that $\mathcal{F}[x \mapsto 1, y \mapsto m] \models Pxy$ and $\mathcal{F}[x \mapsto 1, y \mapsto m] \models \forall z$. $[Pxz \supset y \equiv z]$
- Which *m*? Not sure yet. **But same** *m* **for both!**

- $\mathcal{M}' = (\{1, 2, 3\}, \iota'), \iota'(P) = \{(1, 2), (2, 3), (3, 1)\}\$
- Let's try $m = 1$.
- Need to check if $\mathcal{F}[x \mapsto 1, y \mapsto 1] \models Pxy$ and $\mathcal{F}[x \mapsto 1, y \mapsto 1, z \mapsto 1] \models Pxz \supset y \equiv z$

- $\mathcal{M}' = (\{1, 2, 3\}, \iota'), \iota'(P) = \{(1, 2), (2, 3), (3, 1)\}\$
- Let's try $m = 1$.
- Need to check if $\mathcal{J}[x \mapsto 1, y \mapsto 1] \models Pxy$ and $\mathcal{F}[x \mapsto 1, y \mapsto 1, z \mapsto 1] \models Pxz \supset y \equiv z$
- Vacuously true! Interesting case is when *x* and *z* are "in the relation"
- Need to check if $\mathcal{J}[x \mapsto 1, y \mapsto 1] \models Pxy$ and $\mathcal{F}[x \mapsto 1, y \mapsto 1, z \mapsto 2] \models Pxz \supset y \equiv z$

- $\mathcal{M}' = (\{1, 2, 3\}, \iota'), \iota'(P) = \{(1, 2), (2, 3), (3, 1)\}\$
- Let's try $m = 1$.
- Need to check if $\mathcal{J}[x \mapsto 1, y \mapsto 1] \models Pxy$ and $\mathcal{F}[x \mapsto 1, y \mapsto 1, z \mapsto 1] \models Pxz \supset y \equiv z$
- Vacuously true! Interesting case is when *x* and *z* are "in the relation"
- Need to check if $\mathcal{I}[x \mapsto 1, y \mapsto 1] \models Pxy$ and $\mathcal{F}[x \mapsto 1, y \mapsto 1, z \mapsto 2] \models Pxz \supset y \equiv z$
- Not true! $(1, 2) \in i'(P)$, but $1 \neq 2$
- What if $m = 3$?

- $\mathcal{M}' = (\{1, 2, 3\}, \iota'), \iota'(P) = \{(1, 2), (2, 3), (3, 1)\}\$
- Let's try $m = 1$.
- Need to check if $\mathcal{J}[x \mapsto 1, y \mapsto 1] \models Pxy$ and $\mathcal{F}[x \mapsto 1, y \mapsto 1, z \mapsto 1] \models Pxz \supset y \equiv z$
- Vacuously true! Interesting case is when *x* and *z* are "in the relation"
- Need to check if $\mathcal{I}[x \mapsto 1, y \mapsto 1] \models Pxy$ and $\mathcal{F}[x \mapsto 1, y \mapsto 1, z \mapsto 2] \models Pxz \supset y \equiv z$
- Not true! $(1, 2) \in i'(P)$, but $1 \neq 2$
- What if $m = 3$? Also does not work. $(1, 2) \in i'(P)$, but $3 \neq 2$

- Taking *m* to be 2 works. (Work it out!)
- So $\mathcal{F} \models \psi$, and ψ is satisfiable.
- For each value u assigned to x , take m to be v such that $(u, v) \in \iota'(P)$
- Value of *m* is a function of the value assigned to *x* (This will be important later!)
- **Important**: The value of *m* changes with the value assigned to *x*
- Essentially the difference between ∀*x*. [∃*y*. […]] and ∃*y*. [∀*x*. […]]
- **Exercise**: What property of the structure does *ψ* code up?
- **Exercise**: Is ψ valid?

• Is $\chi(x) := \forall y$. $\lceil \neg(x \equiv y) \supset (Pxy \land \neg Pyx) \rceil$ satisfiable?

- Is $\chi(x) := \forall y$. $\lceil \neg(x \equiv y) \supset (Pxy \land \neg Pyx) \rceil$ satisfiable?
- We define a candidate structure $M = (M, \iota)$, where
	- $M = \{1, 2, 3\}$
	- $I(P) = \{(2, 1), (2, 3), (3, 3)\}\$
- Fix $\mathcal{J} = (\mathcal{M}, \sigma)$, where

- Is $\chi(x) \coloneqq \forall y$. $[\neg(x \equiv y) \supset (Pxy \land \neg Pyx)]$ satisfiable?
- We define a candidate structure $M = (M, \iota)$, where
	- $M = \{1, 2, 3\}$
	- $I(P) = \{(2, 1), (2, 3), (3, 3)\}$
- Fix $\mathcal{J} = (\mathcal{M}, \sigma)$, where $\sigma(x) = 2$ and $\sigma(y) = 1$ for all **other** $y \in \mathcal{V}$.
- Does \mathcal{F} ⊧ $\forall y$. $\lceil \neg (x \equiv y) \supset (Pxy \land \neg Pyx) \rceil$?
- "First" case: Need to check if $\mathcal{J}[y \mapsto 1] \models \neg(x \equiv y) \supset (Pxy \land \neg Pyx)$

- $\mathcal{M} = (\{1, 2, 3\}, \iota)$ with $\iota(P) = \{(2, 1), (2, 3), (3, 3)\}\$
- $\sigma(x) = 2$ and $\sigma(y) = 1$ for all **other** $y \in \mathcal{V}$.
- "First" case: Need to check if $\mathcal{I}[y \mapsto 1] \models \neg(x \equiv y) \supset (Pxy \land \neg Pyx)$
- Same as checking if (ℳ, [*x* ↦ 2, *y* ↦ 1, _ ↦ 1]) ⊧ ¬(*x* ≡ *y*) ⊃ (*Pxy* ∧ ¬*Pyx*)

- $\mathcal{M} = (\{1, 2, 3\}, \iota)$ with $\iota(P) = \{(2, 1), (2, 3), (3, 3)\}\$
- $\sigma(x) = 2$ and $\sigma(y) = 1$ for all **other** $y \in \mathcal{Y}$.
- "First" case: Need to check if $\mathcal{J}[y \mapsto 1] \models \neg(x \equiv y) \supset (Pxy \land \neg Pyx)$
- Same as checking if (ℳ, [*x* ↦ 2, *y* ↦ 1, _ ↦ 1]) ⊧ ¬(*x* ≡ *y*) ⊃ (*Pxy* ∧ ¬*Pyx*)
- Other cases also work out! So ℐ ⊧ χ(*x*).
- Let $\sigma'(x) = 2$ and $\sigma'(y) = 3$ for all other $y \in \mathcal{V}$. Does $(\mathcal{M}, \sigma') \models \chi(x)$?

- $\mathcal{M} = (\{1, 2, 3\}, \iota)$ with $\iota(P) = \{(2, 1), (2, 3), (3, 3)\}\$
- $\sigma(x) = 2$ and $\sigma(y) = 1$ for all **other** $y \in \mathcal{Y}$.
- "First" case: Need to check if $\mathcal{J}[y \mapsto 1] \models \neg(x \equiv y) \supset (Pxy \land \neg Pyx)$
- Same as checking if (ℳ, [*x* ↦ 2, *y* ↦ 1, _ ↦ 1]) ⊧ ¬(*x* ≡ *y*) ⊃ (*Pxy* ∧ ¬*Pyx*)
- Other cases also work out! So $\mathcal{F} \models \chi(x)$.
- Let $\sigma'(x) = 2$ and $\sigma'(y) = 3$ for all other $y \in \mathcal{V}$. Does $(\mathcal{M}, \sigma') \models \chi(x)$?
- Let $\sigma''(x) = 3$ and $\sigma''(y) = 1$ for all other $y \in \mathcal{V}$. Does $(\mathcal{M}, \sigma'') \models \chi(x)$?
- **Exercise**: Is $\chi(x)$ valid? What would it mean for $\chi(x)$ to be valid?

- Can talk about satisfiability for a set of sentences (called a **theory**)
- Fix a signature $\Sigma = (\{\varepsilon\}, \{f/2\}, \emptyset)$
- Consider the following sentences:

∀*x*. [∀*y*. [∀*z*. [*f*(*f*(*x*, *y*),*z*) ≡ *f*(*x*, *f*(*y*,*z*))]]] $∀x.$ [*f*(*x*, ε) \equiv *x*] ∀*x*. [∃*y*. [*f*(*x*, *y*) ≡ ε]]

Is there an interpretation that is a model for all three?

Satisfiability of formulae and sentences

- Earlier example with $\chi(x)$: Both (M , σ) and (M , σ') were models
- Only required that σ and σ' agreed on $fv(\chi(x))$
- Recall: only considered PL valuations restricted to atoms of expression
- **Theorem:** Let Σ be an FO signature and $\varphi \in \text{FO}_{\Sigma}$. Let *M* be a Σ-structure and σ , σ' assignments which agree on f ν (φ) . Then (\mathcal{M}, σ) **⊧** ϕ iff (\mathcal{M}, σ') **⊧** ϕ . Proof: **Exercise!**
- Can we now say something about the satisfiability of **sentences**?

Satisfiability of formulae and sentences

- Earlier example with $\chi(x)$: Both (M , σ) and (M , σ') were models
- Only required that σ and σ' agreed on $fv(\chi(x))$
- Recall: only considered PL valuations restricted to atoms of expression
- **Theorem:** Let Σ be an FO signature and $\varphi \in \text{FO}_{\Sigma}$. Let *M* be a Σ-structure and σ , σ' assignments which agree on f ν (φ) . Then (\mathcal{M}, σ) **⊧** ϕ iff (\mathcal{M}, σ') **⊧** ϕ . Proof: **Exercise!**
- Can we now say something about the satisfiability of **sentences**?
- **Corollary**: Let Σ be an FO signature and φ ∈ FO_Σ be a sentence. Let *M* be a Σ-structure. Then, for any assignments σ , σ' , it is the case that $(\mathcal{M}, \sigma) \models \varphi$ iff $(\mathcal{M}, \sigma') \models \varphi$.

Satisfiability in general

- Recall what we did for satisfiability and validity in PL
- Cast PL expression into CNF, then did resolution
- If a PL expression is in DNF, checking for satisfiability is easy
- Normal forms are useful in general from an automation perspective!
- Easier to handle for algorithms
	- Especially if one can algorithmically obtain the normal form also!
- What does a normal form look like for FO? Are there many such?
- First, some notational shorthand going forward.
- Use $\forall x_1 x_2 ... x_n$ as shorthand for $\forall x_1$. $[\forall x_2$. $[... \forall x_n$. $[...]$...]]
- Omit brackets when clear from context.

Towards a normal form

- Handling nested quantifiers took some doing, maybe get rid of that?
- Cannot get rid of quantifiers entirely without assignment
- So what is the next best thing we might try?

Towards a normal form

- Handling nested quantifiers took some doing, maybe get rid of that?
- Cannot get rid of quantifiers entirely without assignment
- So what is the next best thing we might try?
- Push all quantifiers out into one "block" at the head of the expression
- Do all instantiations upfront; then evaluate the resultant expression
- Recall: Can always push negation inside the quantifier
- Can we do this for other connectives also?
- But first, we need to talk about **substitutions**

Substitutions

- A **substitution** θ is a partial map from $\mathcal V$ to $T(\Sigma)$, with a finite domain
- We can lift this to terms, inductively as usual (**Exercise!**)
- $\theta(t) = t$ for a term *t* in the language, if vars(*t*) \cap dom(θ) = Ø
- Often write $t\theta$ to mean $\theta(t)$; $t\theta$ is a "substitution instance" of *t*
- We often write $\theta = \{t/x \mid x\theta = t \text{ and } x \in \text{dom}(\theta)\}\$
- What effect does θ have on the semantics of expressions?
- **Theorem**: Given an interpretation $\mathcal{F} = ((M, \iota), \sigma)$ for some Σ , a term $t \in T(\Sigma)$, and a substitution $\{u/x\}$ such that $u^{\mathcal{F}} = m \in M$, it is the case ${\rm that} \left(t\{u/x\}\right)^{\mathcal{J}} = t^{\mathcal{J}[x \mapsto m]}.$ Proof: **Exercise!**
- Lift to expressions as usual; ensure distinct bound and free variables.
- A substitution θ is **admissible** for a term *t* (resp. an expression φ) if vars(rng(θ)) ∩ vars(*t*) = ∅ (resp. vars(rng(θ)) ∩ vars(φ) = ∅).

Back to normal forms

- Want to move quantifiers into one block at the head of the expression
- **Theorem**: Let $z \notin fv(\varphi) \cup fv(\psi) \cup \{x_1, ..., x_n\}$, where $n \ge 0$. For $Q_i \in \{\forall, \exists\}$ for every $1 \leq i \leq n$, the following equivalences hold. $Q_1x_1 ... Q_nx_n$. $[\neg Qy. [\varphi]] \Leftrightarrow Q_1x_1 ... Q_nx_n$. *Qy*. $[\neg \varphi]$ $Q_1x_1 ... Q_nx_n$. [ψ ∘ *Qy*. [φ]] ⇔ $Q_1x_1 ... Q_nx_n$. *Qz.* [ψ ∘ φ{*z*/*y*}] $Q_1 x_1 ... Q_n x_n$. $[Qy. [\varphi] * \psi] \Leftrightarrow Q_1 x_1 ... Q_n x_n$. *Qz.* $[\varphi\{z/y\} * \psi]$ $Q_1x_1 ... Q_nx_n$. $[Qy. [\varphi] \supset \psi] \Leftrightarrow Q_1x_1 ... Q_nx_n$. $Qz. [\varphi\{z/y\} \supset \psi]$

where ∘ ∈ {^, ∨, ⊃}, and ∗ ∈ {^, ∨}, and Q = { ∃ if *Q* = ∀ ∀ if *Q* = ∃