COL352 Problem Sheet 1

January 11, 2025

Problem 1. Create a DFA that represents the language {binary representation of $n \in \mathbb{N} \mid n \mod 8$ is either 4 or 1}

Problem 2. Create a regular expression over the alphabet $\{0,1\}$ that represents the language mentioned in Problem 1.

Problem 3. Construct a DFA which accept the language $L = \{w \mid w \in \{a, b\}^* \text{ and } Na(w) \mod 3 = Nb(w) \mod 3\}$, where Na(w) and Nb(w) return the number of occurrences of a and b in w respectively.

Problem 4. Construct a DFA that recognizes the following language over the alphabet $\{0, 1\}$.

 $\{x \mid 01 \text{ and } 10 \text{ have equal number of occurrences as substrings in } x\}$

Problem 5. Let $C_n = \{x \mid x \text{ is a binary number that is a multiple of } n\}$. Show that for each $n \ge 1$, the language C_n is regular. Provide a general construction for C_i for $i \ge 0$.

Problem 6. You already know from the lectures that regular languages are closed under complementation. Given DFAs D_1 and D_2 that recognize languages L_1 (over Σ_1) and L_2 (over Σ_2) respectively, construct an automaton D recognizing the following languages, if you believe that the class of regular languages is closed under the following operations. Provide a counterexample otherwise.

- 1. Difference: $L_1 \setminus L_2 := \{x \mid x \in L_1 \text{ and } x \notin L_2\}$
- 2. Star: $L_1^* := \{w_1 w_2 \dots w_n \mid w_i \in L_1 \text{ for } n \ge 0, \text{ and every } 1 \le i \le n\}$

Problem 7. Design an efficient algorithm that takes input the description of a DFA D and determines if the resulting language L(D) is

- 1. Empty
- 2. Infinite
- 3. Σ^*

Problem 8. Given two DFAs, D_1 and D_2 , design an efficient algorithm to determine if $L(D_1) = L(D_2)$.

Problem 9. $L_1 = (0|1)^* 0(0|1)^* 1(0|1)^*, L_2 = (0|1)^* 01(0|1)^*$. Show that the two languages are equal.

Problem 10. Let L_1 be a regular language and L_2 be any language (not necessarily regular) over the same alphabet Σ . Prove that the language $L = \{x \in \Sigma^* \mid x \cdot y \in L_1 \text{ for some } y \in L_2\}$ is regular by defining a DFA for L starting from a DFA for L_1 and the language L_2 .

Problem 11. $\phi : \Sigma^* \to \Gamma^*$ is called a homomorphism over strings if for all $x, y \in \Sigma^*$, $\phi(xy) = \phi(x)\phi(y)$. Show that if L is a regular language, then $\phi(L) := \{y \in \Gamma^* \mid y = \phi(x), x \in L\}$ where ϕ is a homomorphism as defined above is also regular.

Problem 12. Prove that the class of regular languages is closed under inverse homomorphisms. That is, prove that if $L \subseteq \Gamma^*$ is a regular language and $\phi : \Sigma^* \to \Gamma^*$ is a string homomorphism, then $\phi^{-1}(L) = \{x \in \Sigma^* \mid f(x) \in L\}$ is regular.

Problem 13. Prove that the class of **non-regular** languages is **not** closed under the Union operation. *Hint:* use the closure properties mentioned in the lectures.

Problem 14. Let L be an arbitrary regular language. Prove that the following languages are regular.

- 1. $\{x \mid x \cdot reverse(x) \in L\}$
- 2. $\{x \mid x \cdot reverse(x) \cdot x \in L\}.$
- 3. $\{x \mid xxx \in L\}$

Problem 15. Let L be a regular language with DFA D. We define $Pre(L) = \{x \mid x \text{ is a prefix of some } y \in L\}$. Show that Pre(L) is regular by constructing a DFA.

Problem 16. Let A be any language. Define DROP-OUT(A) to be the language containing all strings that can be obtained by removing one symbol from a string in A. Thus, DROP-OUT(A) = $\{xz|xyz \in A \text{ where } x, z \in \Sigma^*, y \in \Sigma\}$. Show that the class of regular languages is closed under the DROP-OUT operation.