

Recall :

For any two languages λ and R over alphabets Σ_1 and Σ_2 , If there is a total and computable function $\sigma: \mathcal{I}_1^* \longrightarrow \mathcal{I}_2^* s.t.$ for any $c \in \mathcal{I}_1^*$, $c \in \mathcal{A}$ iff $\sigma(\omega) \in \mathbb{R}$, then, we say that \mathcal{A} reduces to \mathcal{R} (denoted $\mathcal{A} \leq \mathcal{R}$), and If a is (independently shown to be) undecidable, so is R $X \leq R$: R is at least as difficult (to decide) as AIf a is lendecidable, so is R

Claim:
$$\mathcal{L}_{\varepsilon} = \{ \langle M \rangle \mid M \text{ is a TM and M acc
D Suppose $\mathcal{L}_{\varepsilon} \text{ is decidable. There is a mach
D Want to show $\mathcal{L}_{TM} \leq \mathcal{L}_{\varepsilon}.$
 $\sigma(s) = \langle P_s \rangle, \text{ where } P_s \text{ does the follow
 $\sigma(s) \neq s \text{ is of the form } \langle M \rangle \# \omega \text{ where M in
(b) Run M on w, accept x if M accepts is
 $s \in \mathcal{L}_{TM} \Rightarrow \mathcal{L}(l_s) = \mathcal{I}^* \Rightarrow \mathcal{E} \in \mathcal{L}(l_s)$
 $s \notin \mathcal{L}_{TM} \Rightarrow \mathcal{L}(l_s) = \phi \Rightarrow \mathcal{E} \notin \mathcal{L}(l_s)$
 $\delta_{v}, s \in \mathcal{L}_{TM} \Leftrightarrow \sigma(s) \in \mathcal{L}_{\varepsilon}.$
Creating $\langle l_s \rangle$ is easy; it does not involve ac$$$$$

cepts & jo undecidable. hine E deciding Le. wing on input x: o a TM, proceed to (b). W. x is irrelevant! $\Rightarrow \langle P_s \rangle \in \mathcal{A}_{\varepsilon}$ $\Rightarrow \langle P_S \rangle \notin \mathcal{L}_{\varepsilon}$ tually running Ps (or M)!

What about the following language? $\lambda_s = \int \langle M \rangle M$ accepts $\langle M \rangle f$

Claim: $\Delta_s = \frac{1}{M} M \text{ accepts } M$ is undecidable. D'hippose Lois decidable. There is a machine S deciding Lo. (2) Want to show $X_{TM} \leq X_s$. $\sigma(s) = \langle P_s \rangle$, where P_s does the following on input x: (a) If s is of the form <M>#w where M is a TM, proceed to (b). (b) Run Mon w, accept x if M accepts w. $SE d_{TM} \Rightarrow d(l_s) = Z^* \Rightarrow \langle l_s \rangle \in d(l_s) \Rightarrow \langle l_s \rangle \in d_s$ $S \notin \mathcal{L}_{TM} \Rightarrow \mathcal{L}(l_s) = \phi \Rightarrow \langle l_s \rangle \notin \mathcal{L}(l_s) \Rightarrow \langle l_s \rangle \notin \mathcal{L}_s$ $\delta v, S \in \mathcal{A}_{\mathrm{FM}} \Leftrightarrow \sigma(s) \in \mathcal{A}_{\mathrm{S}}.$ But d'in is undecidable. So contradiction] d's is undecidable.

