

Recall : Showed the following language undecidable (Halting problem) Am = } (M) # w Mis a TM and Maccepts w f Used à diagonalization technique to prove this For LTM, we assumed the existence of a machine H which decided it We then constructed D, which invoked H to do its computation* Since we ran into a paradox about the operation of D on <D>, we claimed that D could not exist, and this led us to contradict our assumption about the existence of H.

One can, in general, do this for any under
Only the specific machines involved chan
But they might be quite complicated to set
One can use a different technique instead
Suppose I want to compute the product of
If I prove that
$$m*n = m+m+\dots+$$

n times
I someone provides me a machine to compute
If no machine can compute *, no ma

ecidable language. ge! UP l : Reductions m, ne N. m, then te+, I can compute*. chine can compute +.

Suppose I can "easily" convert every string
Conversion
$$\sigma$$
 maps every string in \mathcal{A} to so
every string not in \mathcal{A} t
 $\omega \in \mathcal{A}$ iff $\sigma(\omega) \in \mathbb{R}$
Then, from a decider for \mathbb{R} . I can build

g in L to one in R, one string in R to some string not in R

d a decider for L.

Suppose I can "easily" convert every string
Conversion
$$\sigma$$
 maps every string in λ to so
every string not in λ t
 $\omega \in \lambda$ iff $\sigma(\omega) \in \mathbb{R}$
Then, from a decider for \mathbb{R} , I can build
 ω conversion $\sigma(\omega)$ Decider for
 \mathbb{R}
If output of M on $\sigma(\omega)$ is $\mathcal{Y} := \sigma(\omega) \in \mathbb{R}$
What if λ is known to be undecided

gin L'to one in R. ome string in R to some string not in R

d a decider for L. Decider for L $\longrightarrow \mathcal{Y}/\mathcal{N}$ R, so coedR, so coed.

de? Then so is R.

For any two languages
$$\mathcal{A}$$
 and \mathcal{R} over
IF there is a total and computable function
for any $\cos \in \mathbb{Z}_{1}^{*}$, $\cos \in \mathcal{A}$ iff $\sigma(\omega) \in$
we say that \mathcal{A} reduces to \mathcal{R} (den
if \mathcal{A} is (independently shoron to be) und
 $\mathcal{A} \leq \mathcal{R}$: \mathcal{R} is at least as difficult
If there is a decider for \mathcal{R} , there
if \mathcal{A} is undecidable, so is \mathcal{R}
pof strategy: Assume \mathcal{R} is decidable, shors \mathcal{A}
Contradict the decidable, shors \mathcal{A}

r alphabets Σ_1 and Σ_2 , on $\sigma: \mathcal{Z}_{1}^{*} \longrightarrow \mathcal{Z}_{2}^{*} s.t.$ R, then, when $d \leq R$, and decidable, so is R It (to decide) as L e is one for L vould become decidable ty of R. usually Halting problem