UNDECIDABILITY

Recall : We saw how TMs can simulate off
including officer TMs (via a unive
Today: The Halting Problem is undecidable
$$\mathcal{L}_{TM} = \{\mathcal{M}, \#\omega \mid M \text{ is a TM and M} \}$$

(M) is the string de

50 a machine which takes a string as input could, in theory, be made to run on its own description! <M>4<M> Eg: Bootstrapping compilers

We will use this idea for diagonalization over the set of TMs that take a string as input

her machines, ersal Turing Machine)

accepts w escription of a TM M

Claim:
$$\mathcal{L}_{TM}$$
 is undecidable
Proof: We prove this by contradiction. Assume
Then, there is a machine H which deci
 $H(M) = \int Y$, $F = M$ accepts co
 $H(M) = \int N$, $F = M$ rejects or l

We will construct a machine which uses H as a subroutine.

arm is decidable.

ides LTM.

oops on w

 $\langle M \rangle$?

 $\langle M_1 \rangle \langle M_2 \rangle \langle M_3 \rangle \langle M_4 \rangle \langle M_5 \rangle \langle M_6 \rangle ...$ \mathcal{M}_1 Y Y Y Y \mathbb{N} — / * 6 M_2 N Y \mathcal{N} Y Y -* M_{3} Y Y N --_ N \mathcal{M}_{4} Y N Y Y \mathcal{N} 1 / . \mathcal{M}_{5} Y N N ____ 4 • M_{6} N N Y • • 1 / 1 l l 1

,	1	1	

- ·	
<i>, ,</i>	_
· · ·	_
• ~	
/ .	_

	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	$\langle M_{s} \rangle$	$\langle M_6 \rangle$	
\mathcal{M}_1	Y	N	N	Y	Y	Y	
\mathcal{M}_2	N	N	N	J	У	Y	* * * * * *
$\mathcal{M}_{\mathcal{Z}}$	Y	Y	N	\sim	\sim	N	• • • • • •
\mathcal{M}_{4}	N	Y	Y	N	\sim	Y	
\mathcal{M}_{5}	N	N	\mathcal{N}	\sim	Y	\mathcal{N}	* * * * *
\mathcal{M}_{6}	\mathbb{N}	\mathcal{N}	J	\sim	\sim	N	• * • * / ,
	L L						
	1						
	,						

/	/	

We will construct the following TM D. D'takes as input the string description of a TM M, and does the opposite of whatever H would do. D((M)) = {Y, JM does not accept (M) N, JM accepts (M) Daccepts <M) exactly when M does not accept <M>. D will operate on the string description of any TM. What about on its own string description?

 $\langle M_1 \rangle \langle M_2 \rangle \langle M_3 \rangle \langle M_4 \rangle \langle M_5 \rangle \langle M_6 \rangle ...$ \mathcal{M}_1 Ń N N y Y N , * 6 N \mathcal{N} M_2 y \bigwedge Y Y \$ * $\mathcal{M}_{\mathcal{Z}}$ \aleph N Y Y У Y \$ ٠ ٠ N \mathcal{M}_{4} N J y N У 6 / . \mathcal{M}_{5} Y \mathcal{N} Y Y Y У 4 6 M_{6} Y \mathcal{N} y Y y Y • • 1 1 / 1 l l 1

	۶	. ,		
	1	-		
•		- •		
	1	1		

,	,		
٠	~		
/	· •		

 $\langle M_1 \rangle \langle M_2 \rangle \langle M_3 \rangle \langle M_4 \rangle \langle M_5 \rangle \langle M_6 \rangle ...$ \mathcal{M}_1 Ń N N y N Y , \$ 6 M_2 N \mathcal{N} y \mathcal{N} Y Y * M_3 N \aleph Y Y Y У M_{4} N J N y N Y 6 / . \mathcal{M}_{5} Y \mathcal{N} Y Y Y У 4 6 M_{6} Y \mathcal{N} y Y y Y 1 / 1 l l 1 \mathbb{J}

, , ,	$\langle D \rangle$	
, –		
· · ·		
i i		
1 1		
• ~		
/ .		
	2	

So, LTM = {M#w Misa TM and Maccepts w? is undecidable

ccept (D>

nust be false!

How do we know that there is any language in this set at all?

an is not decidable, but L'in is Turing - recognizable. Claim: Lon is not Turing-recognizable noof: By contradiction.