

decall: "URM-computable" is closed under many useful operations. The class of primitive recursive functions is URM-computable Zow, successor, projection, composition, recursion applied some finite number of times Today: Is this all? Are there other computable functions outside this class? What sort of functions are computable? What sort of predicates are decidable?

If
$$R(x)$$
 and $S(x)$ are decidable predica
is not $R(x)$
if $R(x)$ and $S(x)$
if $R(x)$ and $S(x)$
if $R(x)$ or $S(x)$
Exercise: What are the corresponding compu-
 $g(x) = \begin{cases} 1, x=0\\ 0, x=1 \end{cases}$

 $\Im(f_{\mathcal{R}}(x))$

tes, so are $\int 1$, if R(x) holds C, if K(x) does not hold utable functions?

What sort of functions are computable?
Is exponentiation
$$exp(x, y) = x^{y}$$
 compute
 $exp(x, 0) = 1$
 $exp(x, y+1) = mult(x, exp(x, y))$
mult $(x, y+1) = x + mult(x, y)$ add (x, m)

table?

ult(n,y))

What sort of functions are computable?
Is exponentiation
$$exp(x, y) = x^{y}$$
 compute
 $exp(x, 0) = 1$
 $exp(x, y+1) = mult(x, exp(x, y))$
 $mult(x, 0) = 0$ we already not mult $(x, y+1) = x + mult(x, y)$

table?

vrote a URM program for +

What about a really fast-growing function? $tow(n) = 2^{2 \cdot \cdot \cdot 2} height n$ Is this computable? tow(0) = 1tow(n+1) = exp(2, tow(n))

What about a really fact-growing function
tow
$$(n) = 2^{2^{n+2}}$$
 height n
4s this computable? tow $(0) = 2$.
tow $(n+1) = \exp(4)$
So UKMs can compute some very powerful pr
Are there other computable functions?
There are! (Can be shown via Gödel numberi
Computable = partial recursive functions.
primitive recursive + low
"the least y st. $f(\overline{x}, y) = 0$ " com-

tow(n), 2)rimitive recursive functions

ng and diagonalization) Dovetails neatly into mbda calculus, logic, definability, mputability hierarchy...

Is there a non-computable function? "Mis is easier to do in a different (but equivalent!) model of computation. A 'luring Machine is a finite-state automaton with an infinite tape. DFA/NFA, Finitely many states, "one state memory" Machines as PDA: Finitely many states, stack (21Fo) Language acceptors TM: Finitely many states, tape (bidirectional) * Think of the tape like serially-linked registers without indexing How does one access a register without indexing? With a tape head that can nove left or right. https://samwho.dev/turing-machines/