MORE ABOUT OMPUTABILITY

Recall: We defined computable to mean "the
Wanted to execute two URM programs
Cannot join "as is" because of jump
We now assume that all programs are in st
A program
$$P = I_1 I_2 \dots I_e$$
 is said to be
for every instruction of the form $J(n)$
Exercise: Prove that every program can be c
Qu order to join even standard programs, we
modify the addresses in the jump instruct
Second program.

ieve is a URM program s me after the other. addresses. andard form: in standard form if, n, n, p) in $P, p \leq l \neq 1$. cast in standard form. 2 have to tions in the

figuration of Pis t touch Rofor any v7u. f(b). Nhere 12 > U. led in general: in registers R₁,..., Rn notead of R1.

Concatenation: Let P and R be programs of length l and k. Then, the concatenation of P and R (written PR), is the program $I_1 I_2 \cdots I_l I_{l+1} \cdots I_{l+k}$, where $P = I_1 I_2 \dots I_\ell$, and $I_{\ell+1} \dots I_{\ell+k}$ is the program obtained by ensuring that Q only modifies registers R_0 where v > f(P), and modifying every instruction of the form T(m, n, p) in Q to T(m, n, l+p)What about composing computable functions? If f and g are computable, is fog computable?

after appropriate use of T1 and T2.

Easy if f is unary (essentially, concat 1)
Consider a k-ary f and n-ary
$$g_1, \dots, g_k$$

th is computable, where
 $h(x_1, \dots, x_n) = f(g_1(x_1, \dots, x_n), \dots, g_k)$
Compute $g_1(x_1, \dots, x_n), \dots, g_k(x_1, \dots, x_n)$
then vun the program for f on these v
* Do not overwrite x_1, \dots, x_n during the c
and do not overwrite cany g_i during the compu

 $-f: \mathbb{N}^{k} \rightarrow \mathbb{N}$, all computable. Then, $g_i: \mathbb{N} \to \mathbb{N}$ (χ_1, \ldots, χ_n) (n), alues.

computation of the G.S., utation of gj for j>i.

A Use Rm+1, ..., Rm+n to store x, Rm+n+i to
Finally compute f on
$$\gamma_{m+n+1}, \ldots, \gamma_{m+1}$$

Composition: Let
$$F, G_1, \ldots, G_k$$
 be programs co
Let $M = \text{sum}(n, k, f(F), f(G_1), \ldots, f(G_1))$
Store M_1, \ldots, M_n in R_{m+1}, \ldots, R_{m+n} .
Run G_i on M_1, \ldots, M_n , and store the result
Then run F on $R_{m+n+1}, \ldots, R_{m+n+k}$ as ing
This program computes h .

store g: (x), m'large". n+k, and store in R1.

ionputing f_{g_1, \dots, g_k} resp.

It in R_{m+n+i}. put.

Similarly, the following operations preserve computability. Rearrangement: Suppose f is a k-ary computable function, and x_{i_1}, \ldots, x_{i_k} is some sequence formed using variables form x_1, \ldots, x_n . Then, f, g is the function given by $g(x_1, ..., x_n) = f(x_{i_1}, ..., x_{i_k}),$ g is computable. Projection + Composition Similarly for other definitions of g as follows: $Identification: g(x) = f(x, \dots, x)$ Adding unused variables: $g(x_1, \dots, x_k, x_{k+1}) = f(x_1, \dots, x_k)$.

* Is f computable, where $f(x_1, x_2, x_3) = x_1 + x_2 + x_3$? $f(x_1, x_2, x_3) = h(h(x_1, x_2), x_3), \text{ where}$ $h(x, y) = x + y \quad \text{Computable, by Composition}$ Computable, Shown earlier

* $f_s f$ computable, where f(x) = s, for some $s \in \mathbb{N}$?

* Is
$$f$$
 computable, where $f(x_1, x_2, x_3) = f(x_1, x_2, x_3) = h(h(x_1, x_2), x_3)$, v
 $h(x, y) = x + y$ Co
Computable,
Shown earlier

* Is
$$f_s$$
 computable, where $f_s(x) = s$, for s
* Suppose $f(-,-)$ is computable, and se
where $g(x) = f(x,s)$?

 $\chi_1 + \chi_2 + \chi_3$

where

mpitable, by Composition

some set ?

N. Js 9 computable,

What about the following function? f(0) = 0f(n+1) = f(n)+1.Is f computable?

Recursion: Let
$$\chi_{=}(\chi_{1}, ..., \chi_{n})$$
, and le
n-ary and $(n+2)$ -ary computable
there is a unique $(n+1)$ -ary function
 $h(\chi_{1}, ..., \chi_{n}, 0) = f(\chi_{1}, ..., \chi_{n})$
 $f(\chi_{1}, ..., \chi_{n}, y+1) = g(\chi_{1}, ..., \chi_{n}, y)$
and h is computable.
Example: $f() = 1$, and $g(y, z) = z(y)$
What does h compute?
 $h(0) = f() = 1$
 $h(y+1) = g(y, h(y)) = h(y) \cdot (y+1)$

et f and g be functions. Then, n h as follows

 $h(x_1, \ldots, x_n, y))$

y+1)