

Recall: We showed that CFLs = languages a
Used normal forms for CFGs to sho
Taday: How to convert any grammar into the
We used Greibach Normal Form, where
$$A \rightarrow cB_1 \dots B_k$$
, where
 $k = 0$, $c \in T$, $A, B_1, \dots, B_k \in NT$.
There is another, Chomsky Normal Form, v
either of the form $A \rightarrow c$ or $A \rightarrow BC$,
Thm: For every CFG G, there is a CFG G₁ in
and a CFG G₂ in Greibach Normal form
 $\mathcal{L}(G_1) = \mathcal{L}(G_2) = \mathcal{L}(G)$

accepted by PDAs no this equivalence. se normal forms.

every rule is of the form

where every rule is where $C \in T$, A, B, $C \in NT$. Chomsky Normal Forn, g.f.) $\{EE\}$.

form

rules! aSb bSa SS

nar generate?

Claim: For any CFG G: (NT, T, R, S), there is a CFG G' with no E- or unit-productions such that $\mathcal{L}(G')=\mathcal{L}(G)\setminus\{z\}$ noof: Consider a vet of rules R. s.t. RER, and $(f) if A \rightarrow \alpha B \beta \in \hat{\mathcal{R}} and B \rightarrow \mathcal{E} \in \hat{\mathcal{R}}, then A \rightarrow \alpha \beta \in \hat{\mathcal{R}} and$ $(D) if A \rightarrow B \in \mathcal{R} \text{ and } B \rightarrow \mathcal{Y} \in \mathcal{R}, \text{ then } A \rightarrow \mathcal{Y} \in \mathcal{R}.$ Where A, BENT, d, B, JE (NTUT)*. * How do we know that R does not keep growing infinitely large? R is finite, and can be constructed inductively from R. Now consider $\hat{G} = (NT, T, \hat{R}, S)$. Easy to show $\Delta(\hat{G}) = \Delta(G) \setminus \{\hat{z} \in \hat{Z}\}$. Exercise

We now have to show that if $x \in \mathbb{Z}^+$ is derived using some sequence of application of rules in \hat{R} , it closes not use any E- or unit-productions. If we show this, we can throw out those rules and get the desired G'. Consider $x \neq E$, and consider a shortest derivation for x in \hat{G} . i) Luppose $B \rightarrow E$ is used at some point in this derivation. $S \longrightarrow \mathscr{A} \mathscr{B} \mathscr{S} \longrightarrow \mathscr{A} \mathscr{S} \longrightarrow \mathscr{X}$ At least one of α and δ must be $\neq E$. δo , there must be some $\delta, \eta, J, \tau s.t.$ $S \xrightarrow{\iota} Syble \xrightarrow{J} dB \xrightarrow{I} dS \xrightarrow{k} x$

But how do we get
$$S\eta Bf\sigma$$
? Via some rule of
So, $S \xrightarrow{i-1}$, $SA\sigma \xrightarrow{1}$, $S\eta Bf\sigma \xrightarrow{j}$, $X.BS$
 $S \xrightarrow{\circ}$, $S \xrightarrow{-1}$, $aSb \xrightarrow{\circ}$, aSb

But since we have $A \longrightarrow \eta Bf$ and $B \longrightarrow E$ in \hat{R} , by \mathcal{D} , $A \longrightarrow \eta f \in \hat{R}$. be we can construct a shorter derivation for x, as follows: $S \xrightarrow{i-1} SA \xrightarrow{1} SA \xrightarrow{1} SA \xrightarrow{j} dy \xrightarrow{k} \chi$. i+j+k

'This cuts out at least one rule application from a minimal one for x. Contradiction!

- the form $A \rightarrow \eta Bf$. $\frac{1}{3} d \mathcal{X} \xrightarrow{k} \mathcal{X}. \quad i + j + 1 + k$ $\frac{1}{3} a b \xrightarrow{\sim} a b$

(ii) Suppose
$$A \rightarrow B$$
 is used at some point in
 $S \rightarrow {}^{*} \propto AB \rightarrow \alpha BB \rightarrow {}^{*} \propto$
Since $x \in T^{*}$ and $B \in NT$, B must have
rule, of the form $B \rightarrow 7$. So, then
 $S \xrightarrow{i} \propto AB \xrightarrow{i} SA_{N} \xrightarrow{1} SB_{N} \xrightarrow{1}$
But since $A \rightarrow B \in \hat{R}$ and $B \rightarrow 7 \in$
So, we get a shorter derivation for x as
 $S \xrightarrow{i} \propto AB \xrightarrow{i} SA_{N} \xrightarrow{1} SS_{N} \xrightarrow{k}$
which contradicts the minimality of the abo

a minimal derivation of x.

ave been disposed of via some re must be 8, 8, 9, 8.7. $\rightarrow \delta \delta \eta \xrightarrow{k} \kappa i + 1 + j + 1 + k$ Â, A-JEÊ. follows: x. i+1+j+kve derivation of a.