

Recall: Given a CFG G where every production rule is of the form $A \rightarrow ab_1 \dots B_k$, we construct a PDA M which accepts $\mathcal{A}(G)$ by empty stack. $M = (Q, \Xi, \Gamma, A, q_0, \phi)$, where $(q_{\rho}, \omega, L) \stackrel{*}{\xrightarrow{}} (q, \varepsilon, L)$ for some $q \in Q$. $Q = [q_0, q_1], \Sigma = T, \Gamma = NTv [L] and$ $\Delta = \left\{ \left(\left(\begin{array}{c} q_{0}, \mathcal{E}, \mathcal{E} \right), \left(\begin{array}{c} q_{1}, \mathcal{S} \right) \right), \right. \right\}$ $\mathbb{I}(\mathcal{Q}_1, \alpha, A), (\mathcal{Q}_1, \mathcal{B}_1 \cdots \mathcal{B}_k) \land A \rightarrow a\mathcal{B}_1 \cdots \mathcal{B}_k \in \mathbb{R}$ Thus: If a terninal string x is obtained by applying rules in R to the leftmost nonterninal symbol, then M. accepts x.

Run: For any
$$\chi, y \in \mathbb{Z}^*$$
, $Y \in NT^*$, and C
one can generate $\chi \mathcal{F}$ by n applications
 $(q_1, xy, CL) \xrightarrow{n} (q_4, y, \mathcal{F}L)$.
Proof: By induction on n.
 $n=0: C \longrightarrow \chi \mathcal{F}$ in O applications of any
iff $C = \chi \mathcal{F}$ iff $\chi = \mathcal{E}$ and $\mathcal{F} = C$
iff $(q_1, xy, CL) = (q_1, \mathbb{E}y, \mathcal{F}L) = (q_2, \mathcal{F})$
 $n=m+1:$ Suppose $C \longrightarrow \chi \mathcal{F}$ in $m+1$ app
Consider the $m+1^{th}$ rule applied. It m
 $D \longrightarrow cB$, where $c \in Tv \mathcal{F} \in \mathcal{F}$, $D \in NT$

CENT, s of rules in R to C iff in leftmost-first order

rule in R $y, \Im) \xrightarrow{\circ} (Q_1, Y, \Im).$ plications of rules from R. ust be of the form , and BENT*.

Then, there is some
$$z \in T^*$$
, and $d \in NT^*$
Then, $z D \stackrel{1}{\longrightarrow} z c \beta d = x \delta$. So, x
By IH, $(q_1, z c y, C 1) \stackrel{n}{\longrightarrow} (q_1, c y, \beta)$
We map each rule in R to a transition
 $((q_1, c, D), (q_1, \beta)) \in \Delta$, since the m+1
So, $(q_1, c y, D \lambda 1) \stackrel{1}{\longrightarrow} (q_1, y)$
Combining (a) and (b),
 $(q_1, z c y, C 1) \stackrel{m+1}{\longrightarrow} (q_1, y, \delta 1)$

 $g.t. C \xrightarrow{m} ZDd$ z=zc, and z=Bd. Ddl) -(a)

i in Δ , so t^{th} rule was $D \rightarrow cB$ $,\beta dl - (b)$

Now, suppose $(q_1, xy, CI) \xrightarrow{mr1}_{M} (q_1, y, \mathcal{Y}I)$. $\operatorname{Xet}\left((q_{4}, c, D), (q_{4}, B)\right) \in \Delta$ be the final transition taken. Then, $\chi = ZC$ for some $Z \in \Sigma^*$, $\chi = Bd$ for some $d \in \Gamma$, and $(q_1, z_{CY}, C_1) \xrightarrow{m} (q_1, c_Y, D_{XL}) \xrightarrow{1} (q_1, y, B_{XL}).$ By IH, one can generate uDd by mapplications of rules to C. By the definition of Δ , $D \rightarrow cB \in \mathbb{R}$. $\mathcal{S}_{\mathcal{D}}, \mathbb{C} \xrightarrow{m} \mathbb{U} \mathcal{D} \mathcal{A} \xrightarrow{1} \mathbb{U} \mathcal{C} \mathcal{B} \mathcal{A} = \chi \mathcal{F}.$ 50 x7 can be generated from C by m+1 applications of rules.

 $\lim \mathcal{L}(M) = \mathcal{L}(G).$ VOD : XEL(G)iff $S \longrightarrow x$ via some sequence of "leftmost" applications of vules in R iff $(q_0, \chi, \bot) \xrightarrow{*} (q, \varepsilon, 1)$ for some $q \in Q$ iff $(q_0, \chi, L) \xrightarrow{L} (q_1, \chi, SL) \xrightarrow{*} (q, \varepsilon, L)$ for some geg iff x e d (M). We now look at the other direction. abore Quer a PDA recognizing L, construct a CFG which generates L.

Suppose we are given $M:(Q, Z, \Gamma, \Lambda, q_0, \phi)$ which recognizes Λ by empty stack. Kecall that each transition in Δ is of the form $((9, a, \delta), (9', \delta'))$ We modify transitions so that each transition either only pushes a symbol onto the stack, or pops one off the stack. A · Push+pop : split into multiple transitions • Neither puch nor pop: puch arbitrary symbol, pop it off. F' We also add a transition which takes M to state f if the input word is read and the stack is empty. M: $(Q, Z, T, \Delta', q_0, \xi f)$ We now employ a strategy similar to how we constructed an equivalent regular expression given a DFA.

We will define the production rules for
$$f$$

Suppose $\alpha = a \cos b$ for some $\cos c$. Two pose

NT. take M with empty stack. with empty stack more of M? from an empty stack)

Apg inductively, sibilities arise

(a) The symbol that is initially pushed onto the stack, say \mathcal{S}_{j} is only popped off the stack at the end of ω . Then, the operation of \mathcal{M}_{j} looks as follows: $\dots \qquad (p) \xrightarrow{\alpha} (r) \dots (s) \xrightarrow{b} (q) \dots (s) \xrightarrow{b} (q) \dots (s) \xrightarrow{b} (q) \xrightarrow{$ The stack is never empty What does the stack contain when the machine enters r? 8 What does the stack contain when the machine enters r? 8 Whatever else was puched onto the stack between r and s is popped off by the end of that section of the run! So, Apg can be replaced by aArsb, i.e. Apg -> aArsb.

(b) The symbol that is initially pushed onto the stack is popped off the stack midway. The operation of M books as follows - Stack is empty here! X=yz s.t. y takes M from (p, empty stack) to (r, empty stack), and z takes M from (r, empty stack) to (q, empty stack) Apg -> ApriArg