
CONTEXT-FREE
-

LANGUAGEL



Recall: A context-free
grammar

i s a 4-tuple G : (NT,T, R ,S),
where

NT: finite set of non-terminal symbol
s

T : finite set of terminal symbols

R: finite set of productio
n

rules, each ruleof the form

✗ : : = S

TEN! LENTUT)*

only a single X

S : start symbol, S E N T

α (G) = {w/S:: = w v i a a n application of a finite sequen

ce}of rules i n R



Any language
α sit . α = L (G) for s o m e CFG G is

called a context-free language.

Lab = {w/whas a n equal numberof 'a'sand'b's} i s context-free

a s is the language of balanced parenthese
s.

We said that the ma i n application of CFgs is i n parsing.

We decide whether o r not a string i s well-formed by

checkin

g if there is s o m e sequence of rules
whichgeneratesi t .



Consider has= {co/w has
a n
equal numberof 'a's and 'b's}

Las i s generated by thegrammar

S : : = E/asb/bsa/SS

Consider aabbab ∈ Las. How might this
grammar

generate i t ?

Have to guess the rule
which

w a s
applied toget this string,

and continue recursively!

So
suppose w e got aabbab by using S:: = asb.

Now I need to check
if thegrammar c a n

generate abba etc.

The easiest
way
to kee
p
track of this is v i a parse trees.



S S
⚠

- ⑤ s / I s

✓ ↘

⚠

'⑤ i f '⑤
🙁⑤ 🙁 🙁 ④I'⑤ &

S

& E
&

A grammar
which c a n generate multiple parse

trees for a string is

called ambiguou
s

(otherwise, unambiguou

s)

The
grammar S::-Elasbs/ bsas is also ambiguou

s



To remove ambiguity, o n e must somehow e n s u r e thatmatches a r e unique.

S : - E/ABS/bAS
↳ match the first 'b'against this 'a'

,

then the rest

B:: = b/ABB needs to match two 'b's againsttwoalready-read 'a's

A:: = a/bAA needs to match two 'a's against two already-read 'b's

Provin

g
that

a grammar is
unambiguo

us
c a n be difficult!

Can sometimes do induction
o n
strings

i n the language
,

but not always!



Much like w e provided a machinemodel for regexes v i a DFA/NFA,

w e
would like a

machine model for CFG, a s well.

We sa id that DFAs cannot count, s o there w a s n o DFA for Lab,

because recognizing Las, intuitively, required the machine to

- count # 'a's

- count # ' b ' s

- check that these numbers w e r e equal.

What i s a small extension w e c a n
do to

a
DFA/NFA

s o i t c a n recognize Lab?



Suppos

e
w e add a

counter ctr which c a n

increment b
y
o n e ,

decrement by
o n e , and check whether i t i s z e r o .

Initially: ctr-0

If you s e e a n 'a' ,
increment ctr

If you see a 'b',
decrement ctr (cannot do this if ctr

=
0)

If this machine has a n accepting
r u n o n a

string
w ,

w has a s many 'a's a s ' b ' s .

Exercise: Try to formalize this a s a n e w kind of finite automaton.

Each state needs to track the value of the counter

Cannot decrement a t
a state if counter is z e r o .



For
a

language like Lpa: {w.ru(w)/we{*},
i t i s no t clear how to u s e a single counter to help recognizei t .

But what w e want i s that if w e
somehow

guess
the end of w ,

the letter w e read last i n w
should also be

the letter w e read first i n whatever follows,

and that this inside-out matchin
g

continues t i l l the end.

A stack could help
u s
kee

p

track of this!


