

va language not vegular. No show regularity!) how non-regularity. lis picture. 125*

Consider the language over $\leq = 2a, b_{1}^{2}$ L= Zco | whas an equal number of 'a's and 'b's } Enstead of directly jumping to Myhill-Nerode or the puniping lemma, try to see what closure properties for regularity can give you. Suppose, towards a contradiction, that d is regular. What is $\Delta \cap a^{*}b^{*}$? $a^{*}b^{*} \subseteq \Xi^{*}$ is regular, obviously $\Delta \cap a^{*}b^{*} = \sum_{n=1}^{\infty} a^{n}b^{n} | n \ge 0$? is not regular! Contradiction.

language is regular or not? con match each a' with a b' gex; but not possible! is not regular, Machine model? t what? Automata?

ch specifies how to anguage.

ok like?

r, Do io

t is called

 $z = E | \alpha S | Sb$ $= \mathcal{E}[aS]bS?$

What does a grammar for a mobile number look like? 10 digits preceded by E, O, +91- $S := \langle fd \rangle \langle d \rangle \langle d$ O4fd>+91-4fd> fd:= 6789d = 0 | | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

A major advantage of grammars is the real
What language does the filming code us
$$\exp \rightarrow \exp + term | exp - term | term$$

 $term \rightarrow term * factor | term / factor$
 $factor \rightarrow int | (exp)$
 $int \rightarrow digit | digit int$
 $digit \rightarrow 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9$
The symbole in red are called the termina
 exp , term, factor, int, digit are non-ter
We start at exp and expand non-terminals

ursive specification ф?

factor

its of the grammar minals

as we see them.

Expansion of a non-terninal works according to the same rule(s) no matter what symbols surround it. Only one n.t. on the left! So this grammar is called a context-free grammar (CFG). A CFG is formally described by α 4-tuple : G = (NT, T, R, S)all finite sets - the set of non-terminals NT - the set of terninals T each of the form $X ::= Y \quad or \quad X \to Y$ where $X \in NT$, - the set of production rules R - the start symbol SENT and yENTUT)* What is the language of G? $\chi \rightarrow \chi_1 \chi_1 - \dots - \chi_n$ $\mathcal{A}(G) = \mathcal{J}(\omega) S \longrightarrow^{*} \omega \mathcal{J} \subseteq T^{*}$ some finite sequence \mathcal{J} rules in \mathcal{R} takes S to ω

Going back to our example of

$$\chi = 2 \text{ co} \mid \omega \text{ contains as many} a's as$$

Can we norite a grammar G s.t. $\chi = \lambda$
 $G = (NT, T, R, S)$
 $T = 2a, b?$
 $S ::= E \mid aSb \mid bSa \mid SS$, or
 $S ::= E \mid aSbS \mid bSaS$

