## DECIDING TRACE EQUIVALENCE FOR PROTOCOLS WITH ASYMMETRIC OPERATIONS

## Véronique Cortier, Stéphanie Delaune, Vaishnavi Sundararajan



THEOREM For simple, type-compliant protocols with acyclic dependency graphs, trace equivalence is decidable.

erc

- Artificial •• restriction?
- Some results for unbounded sessions with nonces
- Mostly for reachability properties, disallow forwarding





|                                                                                                                                                                                                                                |                                                                    |                                         | *                           |                                                                                                                                          |                                                                            |                                                                                                                                                                                                                                                                        |           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| This work                                                                                                                                                                                                                      |                                                                    |                                         | Equivalence                 |                                                                                                                                          |                                                                            | Protocol                                                                                                                                                                                                                                                               | Acyclic   |
| Extension to handle<br>asymmetric primitives                                                                                                                                                                                   |                                                                    |                                         |                             |                                                                                                                                          | Denning-Sacco (sign)                                                       |                                                                                                                                                                                                                                                                        |           |
| $\Sigma_{c} = \{\text{senc, aenc, pub, sign, vk, }\langle\rangle, \text{hash, ok}\}$<br>$\Sigma_{d} = \{\text{sdec, adec, getmsg, proj}_{1}, \text{proj}_{2}\}$<br>$\Sigma = \Sigma_{c} \cup \Sigma_{d} \cup \{\text{check}\}$ |                                                                    |                                         |                             |                                                                                                                                          | Needham-Schroeder (asym., tag)                                             |                                                                                                                                                                                                                                                                        | ×         |
|                                                                                                                                                                                                                                |                                                                    |                                         |                             |                                                                                                                                          | Needham-Schroeder-Lowe (asym., tag)                                        |                                                                                                                                                                                                                                                                        |           |
|                                                                                                                                                                                                                                |                                                                    |                                         |                             |                                                                                                                                          | Passive Authentication                                                     |                                                                                                                                                                                                                                                                        |           |
|                                                                                                                                                                                                                                |                                                                    |                                         |                             |                                                                                                                                          | Active Authentication                                                      |                                                                                                                                                                                                                                                                        | <         |
| Actions uniquely<br>tied to sessions                                                                                                                                                                                           | <u>Simple Protocols</u>                                            |                                         |                             | Cycle corresponds to a known attack                                                                                                      |                                                                            |                                                                                                                                                                                                                                                                        | n attack! |
|                                                                                                                                                                                                                                | Each pro<br>disti                                                  | cess ope<br>inct cha                    | erates on a<br>.nnel        | $A = \operatorname{aenc}(\langle N_a, A \rangle)$ $A = \operatorname{aenc}(\langle N_a, N \rangle)$ $A = \operatorname{aenc}(N \rangle)$ | $ \rangle, pub(B))$<br>B<br>$\langle b \rangle, pub(A))$<br>B              | $A \xrightarrow{\text{aenc}(\langle \langle N_a, A \rangle, 1 \rangle, \text{pub}(B))} $ $A \xrightarrow{\text{aenc}(\langle \langle N_a, N_b \rangle, 2 \rangle, \text{pub}(A))} $ $A \xrightarrow{\text{aenc}(\langle N_a, N_b \rangle, 2 \rangle, \text{pub}(B))} $ | B         |
| 5 C 1122                                                                                                                                                                                                                       |                                                                    |                                         |                             | A $A$ $A$                                                                                                                                | $\xrightarrow{B}$                                                          | $(A) \xrightarrow{\text{aenc}(\langle Iv_a, S \rangle, pub(D))} ($                                                                                                                                                                                                     | В         |
| Small terms in witness search                                                                                                                                                                                                  | <ul> <li>Unifiable '<br/>get same t</li> <li>Achievable</li> </ul> | Compl<br>'encrypte<br>ype<br>e via tagg | lance<br>ed" subterms,<br>j | $(\alpha_1): in(c_1, \alpha_2): out(c_1)$                                                                                                | $\langle \tau_0, \tau_1 \rangle$ )<br>, aenc( $\tau_3$ , pub( $\tau_4$ ))) | $ \begin{array}{c} \beta_1: \operatorname{in}(c_2, \operatorname{senc}(\tau_2, \tau_5)) \\ \beta_2: \operatorname{out}(c_2, \langle \tau_2, \tau_4 \rangle) \end{array} $                                                                                              |           |

Short" witness

traces

Acyclic dependency graph Sequential dependencies

Data dependencies

Constructed using types

/ a1 appears béfore  $\alpha_2$  in the specification, so  $\alpha_2$  depends on a1 sequentially (Blue edge)

A key of type t4 is needed to decrypt the term output in  $\alpha_2$ . A term with this type is output in  $\beta_2$  at position 2, so  $\alpha_2$  depends on  $\beta_2$  for data (Green edge)

 $\beta_1$  needs a term of type  $\tau_2$  which is output in  $\beta_2$  at position 1, so β1 depends on β2 for data (Red edge)

## References:

- R. Chrétien, V. Cortier and S. Delaune. "Decidability of trace equivalence for protocols with nonces", in Proc. of the 28th IEEE Computer Security Foundations Symposium (CSF '15), pp. 170–184, 2015.
- S. Fröschle. "Leakiness is decidable for well-founded protocols?", in Proc. of the 4th Conference on Principles of Security and Trust (POST '15), pp. 176-195, 2015.
- G. Lowe. "Towards a completeness result for model checking of security protocols", in Proc. of the 11th Computer Security Foundations Workshop (CSFW '98), 1998.
- R. Ramanujam and S. P. Suresh. "Tagging makes secrecy decidable with unbounded nonces as well", in the 23rd Conference of Foundations of Software Technology and Theoretical Computer Science (FSTTCS '03), pp. 363—375, 2003.